簡易檢索 / 詳目顯示

研究生: 陳琬珺
Wen June Chen
論文名稱: 中溫型固態氧化物燃料電池之LSCF陽極之水煤氣反應之研究
A study on coal gas reaction over LSCF anode of intermediate-temperature solid oxide fuel cell
指導教授: 黃大仁
Ta Jen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 固態氧化物燃料電池水煤氣陽極
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用鈣鈦礦型結構材料(ABO3)之LSCF (La0.58Sr0.4Co0.2Fe0.8O3-δ)氧化物,有別於傳統上以LSCF做為陰極材料,而是將其應用至固態氧化物燃料電池之陽極端。同時探討添加Cu或Ni等活性金屬至LSCF中,藉由改變LSCF的B site組成,觀察其對於各種不同比例的CO與H2混合氣之催化能力。
    由CO-TPR與H2-TPR之實驗得知,添加Cu至LSCF之B site形成LSCCF系列材料其還原溫度約為300℃,但是並無法有效地提高CO氧化反應之活性。若進一步地改為添加Ni至LSCF之 B site中取代Co而形成LSCNF118,因為在439℃時LSCNF118會有一個還原波峰,所以可大幅地提高LSCF對於H2在中高溫下之氧化反應能力。
    本研究為了瞭解何種組成的LSCF氧化物,於操作溫度800℃時能有最佳之反應活性,故以粉體進行CO、H2及水煤氣定溫反應實驗。研究結果顯示,未添加任何活性金屬的LSCF,對於CO氧化反應擁有最佳的反應活性,操作時間於60分鐘後仍能保持0.572μmole/min.g之CO2生成量。另外在水煤氣反應實驗中,添加Ni至LSCF之B site形成LSCNF118,則會破壞CO氧化反應之活性。若將LSCF含浸10wt%Ni製備成10Ni-LSCF,它不但能夠提高對於H2氧化反應之催化能力,而且還能提昇氧化CO氣體之反應活性。
    利用H2作為陽極反應氣體來進行測試單電池之效能,結果發現LSCF作為陽極之單電池效能並不良好,maximum power density僅達5.176 mW/cm2。若是添加導氧離子性效果較為優異的GDC材料 (Gadolinium doped Cerium,Gd0.2Ce0.8O3)至LSCF,除了可增加陽極材料的氧離子傳導速度之外,更能大幅地提高電池效能達至12.29 mW/cm2。若再添加少量Ni金屬至LSCF-GDC中製成3Ni-60LSCF-GDC,可將電池效能再提高至14.72 mW/cm2。
    改變陽極反應氣體為H2與CO各種比例之混合氣進行單電池效能測試,結果顯示CO的比例越高則電池效能越佳,而當以純CO為燃料之電池maximum power density較純H2為燃料足足相差有5倍之多。顯示以LSCF作為陽極材料,並利用純CO為反應氣體,其電池效能會有優異的表現。


    第一章 緒論 1 第二章 文獻回顧 4 2-1 固態氧化物燃料電池(Solid oxide fuel cell, SOFC) 4 2-1.1 操作原理 4 2-1.2陽極電化學反應 5 2-2中溫型固態氧化物燃料電池 8 2-3 導氧離子氧化物 10 2-3.1鈣鈦礦型結構 10 2-3.2螢石型結構 12 2-3.3 氧空洞與導氧離子性 13 2-3.3-1固有氧空洞(intrinsic oxygen vacancy) 13 2-3.3-2 非固有氧空洞(extrinsic oxygen vacancy) 14 2-4 燃料的選擇 15 2-5鈣鈦礦型氧化物陽極材料 19 第三章 研究規劃 22 第四章 實驗方法與步驟 24 4-1 實驗藥品 24 4-2製備方法 25 4-2.1醇鹽反應法製備氧化釓參雜氧化鈰(GDC) 25 4-2.2共沈澱法製備氧化釓參雜氧化鈰(GDC) 25 4-2.3 GNP(Glycine Nitrate Process)法製備氧化釓參雜氧化鈰(GDC) 26 4-2.4 GNP法製備鑭鍶鈷鐵氧化物系列 26 (LSCF、LSCCF118、LSCCF217、LSCNF118、LSCNF217) 26 4-2.5以含浸法製備Ni-GDC粉體 27 4-2.6以含浸法製備Ni-LSCF粉體 28 4-2.7製備陽極與接合層漿料 28 4-3 實驗裝置與實驗方法 29 4-3.1 儀器 29 4-3.2程溫還原反應與定溫反應 30 4-4 電池效能測試 31 第五章 實驗結果與討論 36 5-1 X光繞射分析(XRD) 36 5-1.1不同材料之合成法製備GDC 36 5-1.2 GNP法製備LSCF、LSCCF118、LSCCF217 38 5-2 程溫還原實驗(TPR) 41 5-2.1 氫氣程溫還原反應H2-TPR 41 5-2.1-1 60Ni-GDC 41 5-2.1-2 LSCF、LSCCF217、LSCCF118與LSCNF118 43 5-2.2 一氧化碳程溫還原反應CO-TPR 48 5-2.2-1 LSCF、LSCCF217與LSCCF118 48 5-3 定溫還原反應測試 51 5-3.1 氫氣定溫反應 51 5-3.2 一氧化碳定溫反應 54 5-3.3 水煤氣定溫反應 56 5-4電池效能表現 60 5-4.1 電池之SEM微結構圖 60 5-4.2電流電壓圖(I-V curve plot) 62 5-4.2-1傳統鎳觸媒積碳現象 62 5-4.2-2混合導體LSCF為陽極 66 5-4.2-3 LSCF混合導氧離子材料GDC為陽極 72 5-5定溫定電壓測試 80 5-5.1水煤氣定電壓反應 80 5-5.2甲烷定電壓反應 88 第六章 結論 94 第七章 未來展望 96 第八章 參考文獻 97 第九章 附錄 101 9-1. 校正曲線 101

    1. Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, ”Fuel flexibility study of an integrated 25kW SOFC reformer system”, Journal of Power Sources, Vol. 144, p.67, 2005
    2. P. Holtappels, L.G.J. De Haart, U. Stimming, I.C. Vinke, M. Mogensen, “Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes”, Journal of Applied Electrochemistry, Vol.29, p.561, 1999
    3. S. Park, J.M. Vohs, R.J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, Vol. 404, p.265, 2000
    4. A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe, D. Mantzavinos, ”La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cell”, Catalysis Today, Vol.55, p.197, 2000
    5. T. Vaz, A.V. Salker, “Preparation, characterization and catalytic CO oxidationstudies on LaNi1−xCoxO3 system”, Materials Science and Engineering B,Vol.14, p.81, 2007
    6. H.M. Zhang, Y.Shimizu, Y. Teraoka, N. Miura, N. Yamazoe, “Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3 perovskite-type Oxides”, Journal of Catalysis, Vol.121, p.432, 1990
    7. S.P. Scott, D. Mantzavinos, A. Hartley, M. Sahibzada, I.S. Metcalfe, “Reactivity of LSCF perovskite”, Solid State Ionics, Vol.152-153, p.777, 2002
    8. Y. Teraoka, H. Nii, S. Kagawa, K. Jansson, M. Nygren, “Influence of the simultaneous substitution of Cu and Ru in the perovskite-type (La,Sr)MO3 (M=Al, Mn, Fe, Co) on thecatalytic activity for CO oxidation and CO–NO reactions”, Applied Catalysis, Vol. 194-195, p.35, 2000
    9. 黃鎮江,燃料電池,全華科技圖書 (2005)6.3-7
    10. E. Hafel, H.G. Lintz,’’Elektrodencharakterisierumg und Grenzteperatur Beider Elektrochemischen Messungder SauerstoFFaktivitat an Platin’’, Solid State Ionics, Vol.23, p235, 1987

    11. A. van Hassel, B. A. Boukamp, A. J. Burggraaf, “Electrode Polarization at Au,O2(g)/Yttria Stabilized Zirconia Interface.PartI: Theoretical Considerations of Reaction Model”,Solid State Ionics, Vol. 48, p.139, 1991
    12. J. Mizusaki, H. Tagawa, Y. Miyaki, S. yamauchi, K. Hirano, “Kinetics of The Electrode Reaction at The CO-CO2, Porous Pt/Stabilized Zirconia Interface ”,Solid State Ionics, Vol.53, p.126, 1992
    13. J. Mizusaki, K. Amano, S. yamauchi, K. Fueki, “Electrode Reaction at Pt,O2(g)/Stabilized Zirconia Interface .PartI: Theoretical Considerations of Reaction Model ”,Solid State Ionics, Vol. 22, p.313, 1987
    14. J.Mizusaki, H.Tagawa, T.Saito, ”Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres”,Journal of Electrochemical Society, Vol. 141, p.2129,1994
    15. M.J.Saeki,H.Uchida, M.Watanbe,” Noble metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature”,Catalysis Letters, Vol. 26, p.149, 1994
    16. M.Watanade, H.Uchida, M.Shibata, N.Mochizuki, K.Amikura, “High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells”, Journal of Electrochemical Society, Vol. 141, p.342, 1994
    17. A. Weber, E.I. Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, Vol. 127, p.273, 2004.
    18. L.Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, “Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3-δ by glycine–nitrate combustion method”, Journal of Alloys and Compounds, Vol.348, p.325, 2003
    19. A.L. Sauvet, J. Fouletier, F. Gaillard and M. Primet,” Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1−xSrxCr1−yRuyO3−δ, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature”, Journal of Catalysis, Vol. 209, p. 25, 2002
    20. A.L. Sauvet, J.T.S. Irvine,” Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ”, Solid State Ionics , Vol 167, p. 1,2004
    21. S.W. Tao, J.T.S. Irvine, “Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3- in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material”, Chemical Material, Vol. 16, p. 4116, 2004
    22. C.G. Vayenas, S.I. Bebelis, I.V. Yentekakis and S.N. Neophytides, “Electrocatalysis and Electrochemical Reactors. In: P.J. Gellings and H.J.M. Bouwmeester, Editors”, The CRC Handbook of Solid State Electrochemistry, CRC Press, pp. 445–480, 1997
    23. M. Stoukides, “Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook “, Catalysis Reviews, Vol. 42, p. 1, 2000
    24. A. Weber, B. Sauer, A. C. Mu¨ller, D. Herbstritt, E. Ivers-Tiffe´e,” Oxidation of H2, CO and methane in SOFCs with Ni/YSZ cermet anodes”, Solid State Ionics, Vol.152-153, p.543, 2002
    25. K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi,M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, and Y. Uchida, “Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases”,, Journal of The Electrochemical Society, Vol.149, p.227, 2002
    26. P. Holtappels, L.G.J. De Haart, U. Stimming, I.C. Vinke, M.Mogensen, “Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes”, Journal of Applied Electrochemistry, Vol.29, p.561, 1999
    27. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Homg, “Performance of anode-support solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, Journal of Power Source, Vol. 106, p.160, 2002
    28. M. Watanade, H. Uchida, M. Shibata, N. Mochizuki, K. Amikura,”High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells”, Journal of Electrochemical Society, Vol.141, p342, 1994

    29. 黃璟櫻,”以 Co-doped Y1-xSrxMnO3為固態氧化物燃料電池陰極材料之研究,碩士論文,清華大學化工所(2001)
    30. H. Yasuda, Y. Fujiwara, N. Mizuno and M. Nisono,” Oxidation of carbon monoxide on LaMn1 –xCuxO3 perovskite-type mixed oxides”, Journal of Chemical Society, Faraday Transition, Vol.90, p. 1183, 1994
    31. K. Swierczek, M. Gozu, “Structural and electrical properties of selected La1−xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides”, Journal of Power Sources, Vol. 173 , p.695, 2007
    32. Brouer, G. Gradinger, H.Z. Anorg, Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 276, p.209, 1954
    33. K.K. Haunen, K.Vels Hansen, “A-site deficient (La0.6Sr0.4)1-sFe0.8Co0.2O3-δ perovskite as SOFC cathodes”, Solid State Ionic, Vol.178, p.1379, 2007
    34. Massarotti, V. et. Al., Z Kristallogr, Vol. 213, p.259, 1998
    35. 王俊修,“以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究”,碩士論文,清華大學化工所(2006)
    36. 吳元順,“Ni-YDC觸媒經積碳-去積碳處理後對甲烷-二氧化碳重組反應影響之研究”,碩士論文,清華大學化工所(2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE