研究生: |
陳琬珺 Wen June Chen |
---|---|
論文名稱: |
中溫型固態氧化物燃料電池之LSCF陽極之水煤氣反應之研究 A study on coal gas reaction over LSCF anode of intermediate-temperature solid oxide fuel cell |
指導教授: |
黃大仁
Ta Jen Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 固態氧化物燃料電池 、水煤氣 、陽極 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用鈣鈦礦型結構材料(ABO3)之LSCF (La0.58Sr0.4Co0.2Fe0.8O3-δ)氧化物,有別於傳統上以LSCF做為陰極材料,而是將其應用至固態氧化物燃料電池之陽極端。同時探討添加Cu或Ni等活性金屬至LSCF中,藉由改變LSCF的B site組成,觀察其對於各種不同比例的CO與H2混合氣之催化能力。
由CO-TPR與H2-TPR之實驗得知,添加Cu至LSCF之B site形成LSCCF系列材料其還原溫度約為300℃,但是並無法有效地提高CO氧化反應之活性。若進一步地改為添加Ni至LSCF之 B site中取代Co而形成LSCNF118,因為在439℃時LSCNF118會有一個還原波峰,所以可大幅地提高LSCF對於H2在中高溫下之氧化反應能力。
本研究為了瞭解何種組成的LSCF氧化物,於操作溫度800℃時能有最佳之反應活性,故以粉體進行CO、H2及水煤氣定溫反應實驗。研究結果顯示,未添加任何活性金屬的LSCF,對於CO氧化反應擁有最佳的反應活性,操作時間於60分鐘後仍能保持0.572μmole/min.g之CO2生成量。另外在水煤氣反應實驗中,添加Ni至LSCF之B site形成LSCNF118,則會破壞CO氧化反應之活性。若將LSCF含浸10wt%Ni製備成10Ni-LSCF,它不但能夠提高對於H2氧化反應之催化能力,而且還能提昇氧化CO氣體之反應活性。
利用H2作為陽極反應氣體來進行測試單電池之效能,結果發現LSCF作為陽極之單電池效能並不良好,maximum power density僅達5.176 mW/cm2。若是添加導氧離子性效果較為優異的GDC材料 (Gadolinium doped Cerium,Gd0.2Ce0.8O3)至LSCF,除了可增加陽極材料的氧離子傳導速度之外,更能大幅地提高電池效能達至12.29 mW/cm2。若再添加少量Ni金屬至LSCF-GDC中製成3Ni-60LSCF-GDC,可將電池效能再提高至14.72 mW/cm2。
改變陽極反應氣體為H2與CO各種比例之混合氣進行單電池效能測試,結果顯示CO的比例越高則電池效能越佳,而當以純CO為燃料之電池maximum power density較純H2為燃料足足相差有5倍之多。顯示以LSCF作為陽極材料,並利用純CO為反應氣體,其電池效能會有優異的表現。
1. Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, ”Fuel flexibility study of an integrated 25kW SOFC reformer system”, Journal of Power Sources, Vol. 144, p.67, 2005
2. P. Holtappels, L.G.J. De Haart, U. Stimming, I.C. Vinke, M. Mogensen, “Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes”, Journal of Applied Electrochemistry, Vol.29, p.561, 1999
3. S. Park, J.M. Vohs, R.J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, Vol. 404, p.265, 2000
4. A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe, D. Mantzavinos, ”La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cell”, Catalysis Today, Vol.55, p.197, 2000
5. T. Vaz, A.V. Salker, “Preparation, characterization and catalytic CO oxidationstudies on LaNi1−xCoxO3 system”, Materials Science and Engineering B,Vol.14, p.81, 2007
6. H.M. Zhang, Y.Shimizu, Y. Teraoka, N. Miura, N. Yamazoe, “Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3 perovskite-type Oxides”, Journal of Catalysis, Vol.121, p.432, 1990
7. S.P. Scott, D. Mantzavinos, A. Hartley, M. Sahibzada, I.S. Metcalfe, “Reactivity of LSCF perovskite”, Solid State Ionics, Vol.152-153, p.777, 2002
8. Y. Teraoka, H. Nii, S. Kagawa, K. Jansson, M. Nygren, “Influence of the simultaneous substitution of Cu and Ru in the perovskite-type (La,Sr)MO3 (M=Al, Mn, Fe, Co) on thecatalytic activity for CO oxidation and CO–NO reactions”, Applied Catalysis, Vol. 194-195, p.35, 2000
9. 黃鎮江,燃料電池,全華科技圖書 (2005)6.3-7
10. E. Hafel, H.G. Lintz,’’Elektrodencharakterisierumg und Grenzteperatur Beider Elektrochemischen Messungder SauerstoFFaktivitat an Platin’’, Solid State Ionics, Vol.23, p235, 1987
11. A. van Hassel, B. A. Boukamp, A. J. Burggraaf, “Electrode Polarization at Au,O2(g)/Yttria Stabilized Zirconia Interface.PartI: Theoretical Considerations of Reaction Model”,Solid State Ionics, Vol. 48, p.139, 1991
12. J. Mizusaki, H. Tagawa, Y. Miyaki, S. yamauchi, K. Hirano, “Kinetics of The Electrode Reaction at The CO-CO2, Porous Pt/Stabilized Zirconia Interface ”,Solid State Ionics, Vol.53, p.126, 1992
13. J. Mizusaki, K. Amano, S. yamauchi, K. Fueki, “Electrode Reaction at Pt,O2(g)/Stabilized Zirconia Interface .PartI: Theoretical Considerations of Reaction Model ”,Solid State Ionics, Vol. 22, p.313, 1987
14. J.Mizusaki, H.Tagawa, T.Saito, ”Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres”,Journal of Electrochemical Society, Vol. 141, p.2129,1994
15. M.J.Saeki,H.Uchida, M.Watanbe,” Noble metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature”,Catalysis Letters, Vol. 26, p.149, 1994
16. M.Watanade, H.Uchida, M.Shibata, N.Mochizuki, K.Amikura, “High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells”, Journal of Electrochemical Society, Vol. 141, p.342, 1994
17. A. Weber, E.I. Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, Vol. 127, p.273, 2004.
18. L.Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, “Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3-δ by glycine–nitrate combustion method”, Journal of Alloys and Compounds, Vol.348, p.325, 2003
19. A.L. Sauvet, J. Fouletier, F. Gaillard and M. Primet,” Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1−xSrxCr1−yRuyO3−δ, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature”, Journal of Catalysis, Vol. 209, p. 25, 2002
20. A.L. Sauvet, J.T.S. Irvine,” Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ”, Solid State Ionics , Vol 167, p. 1,2004
21. S.W. Tao, J.T.S. Irvine, “Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3- in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material”, Chemical Material, Vol. 16, p. 4116, 2004
22. C.G. Vayenas, S.I. Bebelis, I.V. Yentekakis and S.N. Neophytides, “Electrocatalysis and Electrochemical Reactors. In: P.J. Gellings and H.J.M. Bouwmeester, Editors”, The CRC Handbook of Solid State Electrochemistry, CRC Press, pp. 445–480, 1997
23. M. Stoukides, “Solid-Electrolyte Membrane Reactors: Current Experience and Future Outlook “, Catalysis Reviews, Vol. 42, p. 1, 2000
24. A. Weber, B. Sauer, A. C. Mu¨ller, D. Herbstritt, E. Ivers-Tiffe´e,” Oxidation of H2, CO and methane in SOFCs with Ni/YSZ cermet anodes”, Solid State Ionics, Vol.152-153, p.543, 2002
25. K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi,M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, and Y. Uchida, “Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases”,, Journal of The Electrochemical Society, Vol.149, p.227, 2002
26. P. Holtappels, L.G.J. De Haart, U. Stimming, I.C. Vinke, M.Mogensen, “Reaction of CO/CO2 gas mixtures on Ni-YSZ cermet electrodes”, Journal of Applied Electrochemistry, Vol.29, p.561, 1999
27. S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Homg, “Performance of anode-support solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, Journal of Power Source, Vol. 106, p.160, 2002
28. M. Watanade, H. Uchida, M. Shibata, N. Mochizuki, K. Amikura,”High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells”, Journal of Electrochemical Society, Vol.141, p342, 1994
29. 黃璟櫻,”以 Co-doped Y1-xSrxMnO3為固態氧化物燃料電池陰極材料之研究,碩士論文,清華大學化工所(2001)
30. H. Yasuda, Y. Fujiwara, N. Mizuno and M. Nisono,” Oxidation of carbon monoxide on LaMn1 –xCuxO3 perovskite-type mixed oxides”, Journal of Chemical Society, Faraday Transition, Vol.90, p. 1183, 1994
31. K. Swierczek, M. Gozu, “Structural and electrical properties of selected La1−xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides”, Journal of Power Sources, Vol. 173 , p.695, 2007
32. Brouer, G. Gradinger, H.Z. Anorg, Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 276, p.209, 1954
33. K.K. Haunen, K.Vels Hansen, “A-site deficient (La0.6Sr0.4)1-sFe0.8Co0.2O3-δ perovskite as SOFC cathodes”, Solid State Ionic, Vol.178, p.1379, 2007
34. Massarotti, V. et. Al., Z Kristallogr, Vol. 213, p.259, 1998
35. 王俊修,“以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為之研究”,碩士論文,清華大學化工所(2006)
36. 吳元順,“Ni-YDC觸媒經積碳-去積碳處理後對甲烷-二氧化碳重組反應影響之研究”,碩士論文,清華大學化工所(2005)