簡易檢索 / 詳目顯示

研究生: 黃沁寧
Huang, Chin Ning
論文名稱: 利用原位腦腫瘤模型探討免疫細胞隨腫瘤生長與放射治療後的動態行為
The dynamic behavior of immune cells during tumor progression and after radiotherapy in orthotopic brain tumor model
指導教授: 江啟勳
Chiang, Chi Shiun
口試委員: 張建文
Chang, Chien Wen
陳芳馨
Chen, Fang Hsin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 腦腫瘤免疫細胞流式細胞儀
外文關鍵詞: brain tumor, immune cells, flow cytometry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因腫瘤微環境極為複雜,而且可能隨著腫瘤生長與外在刺激,如接受放射治療 (RT),而改變。本研究的主要目標在應用原位生長的老鼠腦瘤模型精細的探究,腫瘤前、中、後期各種免疫細胞數量變化,以進一步釐清免疫細胞在腫瘤與接受放射治療後的變化與扮演的角色。實驗中利用流式細胞儀與抗體將細胞分群,所觀看的細胞群有由源自於骨髓細胞的macrophages、microglia、 monocytic 與 neutrophilic - MDSC,另外還有lymphocytes中的helper T細胞、 cytotoxic T細胞和regulatory T細胞;實驗發現腦瘤中的microglia與腦室中的microglia形態不同,甚至認為與macrophages功能類似;而MDSC的功能為抑制T細胞,且發現M-MDSC與N-MDSC兩群細胞在腫瘤前後期的重要性不同。另外還發現RT過後會造成MDSC數量的下降,而同時T細胞的數量會上升,如果在此時能加入免疫治療,效果可能更佳。此研究也同時觀察了周邊器官的免疫細胞群隨著腫瘤生長的變化趨勢,嘗試這去了解這些細胞是否可以作為腫瘤生長或治療的預測指標。
    另外,利用帶有冷光基因的腫瘤細胞,進行免疫T細胞的毒殺實驗,研究發現由有種植腫瘤的老鼠所取下的CD8+ T細胞,其毒殺腫瘤細胞的效率似乎被腫瘤所釋放的因子影響而降低了,但是放射治療過後其對癌細胞毒殺的效率有增加的趨勢。更進一步地探究腫瘤的生長是否會影響T細胞的增生效率,從帶有腫瘤老鼠取出的CD8+ T細胞其增生效率有顯著被抑制的趨勢,但CD4+的增生不會降低反而是增加,由此可發現腫瘤細胞對於CD4+與CD8+T細胞而言,是會有不同的影響,也可由此推論CD4+ T細胞與CD8+T細胞對腫瘤細胞的影響可能也不完全一樣。希望可以藉由此研究更進一步的瞭解免疫細胞在腫瘤裡面所扮演的角色,甚至在哪個時期進行合併免疫治療可以達到最好的效果。


    Tumor microenvironment is pretty complex and it might be changed during tumor progression or following therapy. To examine the effect of stroma cells on the behaviors of tumor growth, the relative relationship among tumor cells, brain resident cells, such as microglia, and infiltrating cells, such as monocytic (CD45+CD11b+) or lymphocytic (CD45+CD11b-) lineage cells, was analyzed by flow cytometry. Not only tumor area, peripheral organs, including spleen, blood, and lymph nodes were also examined. The preliminary data showed that microglia had different pattern in ventricles and in the tumor. Furthermore, we found that the change of two subtypes of myeloid derived suppressor cells (MDSCs), Ly6G+ neutrophilic MDSC (N-MDSC) and Ly6G- monocytic MDSC (M-MDSC), was in opposite direction during tumor progression. The increase of M-MDSCs is associated with the increase of tumor size while the N-MDSC is decreased. More interestingly, the population of MDSC is closely related to the change of T cells, in particular after radiotherapy.
    We also established a brain tumor reporter cell line, ALTS1C1-Luc. We used this cell line to prove that CD8+ T cell had cytotoxicity to tumor cells and this efficiency would be influenced by bearing tumor and radiotherapy. The effect of bearing tumor and radiotherapy on T cell proliferation was also studied. Results show that bearing tumor and radiotherapy have distinctive effect on the cytotoxicity of CD8+ and the proliferation potential of CD4+ T cells.

    摘要 3 ABSTRACT 4 壹、緒論 9 1.1神經膠質瘤 9 1.2 冷光基因 9 1.3 腫瘤相關免疫細胞 10 1.4放射治療後的腫瘤微環境 12 1.5 研究目的與內容 12 貳、研究方法及步驟 14 2.1分生實驗-IRES-FLUC質體建構 14 2.1.1 fLuc insert 14 2.1.2 pIRES Vector 14 2.1.3 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 15 2.1.4 DNA 接合作用(ligation) 16 2.1.5 細菌熱休克轉殖法(Heat-Shock Transformation) 17 2.1.6 微量純化製備質體(PD100,geneaid,Taiwan) 17 2.1.7 洋菜膠電泳 18 2.1.8 中量純化製備質體(12145,QIAGEN,USA) 18 2.2細胞實驗 19 2.2.1配置DMEM細胞培養液 19 2.2.2 配置RPMI細胞培養液 19 2.3.3細胞培養液配方 20 2.2.4 細胞繼代 20 2.2.3 細胞轉染(transfection) 21 2.3質體在細胞中轉染的表現 22 2.3.1 細胞存活試驗(MTT assay) 22 2.3.2 RT-PCR 23 2.3.3 ALTS1C1-Luc 表現強度(Luciferase assay system) 25 2.4動物實驗 26 2.4.1 動物來源 26 2.4.2 原位腦瘤植入 26 2.4.3 非侵入式活體分子影像系統(Caliper IVIS system) 27 2.5 腦腫瘤內部免疫細胞的角色 27 2.5.1 免疫細胞的取得 27 2.5.2流式細胞儀(Flow cytometry)分析 29 2.6 T細胞與腫瘤細胞之交互影響 29 2.6.1 T細胞毒殺測試 30 2.6.2腫瘤細胞對於T 細胞增生增生的影響 31 參、實驗結果 33 3.1分生實驗 33 3.1.1 pIRES-fLuc質體的構築與確認 33 3.2 轉染細胞之篩選與測試 33 3.2.1 細胞毒殺測試(cytotoxic assay) 33 3.2.2 冷光強度測試(luciferase assay system) 34 3.2.3 RT-PCR 34 3.3 非侵入式活體影像系統(IVIS) 34 3.4腦腫瘤內部免疫細胞的角色 35 3.4.1免疫細胞的分群 35 3.4.2 腫瘤內部免疫細胞與腫瘤細胞的關係 35 3.4.3 腦瘤內不同免疫細胞群的變化 36 3.4.5 周邊器官免疫細胞的變化 38 3.5 T 細胞與腫瘤細胞的交互影響 40 3.5.1 實驗設計與細胞分選 40 3.5.2 CD8+ T細胞對腫瘤細胞之毒殺效率 41 3.5.3 腫瘤細胞影響T細胞之增生情形 41 肆、結論與討論 43 伍、圖表 52 陸、參考資料 70

    1. Akesson, A., B. Julin, and A. Wolk, Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: A population-based prospective cohort study. Cancer Research, 2008. 68(15): p. 6435-6441.
    2. Raizer, J.J., HER1/EGFR tyrosine kinase inhibitors for the treatment of glioblastoma multiforme. J Neurooncol, 2005. 74(1): p. 77-86.
    3. Perego, C., S. Fumagalli, and M.G. De Simoni, Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation, 2011. 8: p. 174.
    4. Gould, S.J. and S. Subramani, Firefly luciferase as a tool in molecular and cell biology. Anal Biochem, 1988. 175(1): p. 5-13.
    5. Kopfstein, L. and G. Christofori, Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cellular and Molecular Life Sciences, 2007. 64(24): p. Ii-Ii.
    6. Wang, J.C., et al., Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leukemia Research, 2016. 43: p. 39-43.
    7. Youn, J.I., et al., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 2008. 181(8): p. 5791-5802.
    8. Gabrusiewicz, K., et al., Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One, 2011. 6(8): p. e23902.
    9. Komohara, Y., et al., M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. J Clin Exp Hematop, 2011. 51(2): p. 93-9.
    10. Disis, M.L., H. Bernhard, and E.M. Jaffee, Use of tumour-responsive T cells as cancer treatment. Lancet, 2009. 373(9664): p. 673-683.
    11. Takeuchi, Y. and H. Nishikawa, Roles of regulatory T cells in cancer immunity. Int Immunol, 2016.
    12. Zielske, S.P., D.L. Livant, and T.S. Lawrence, Radiation Increases Invasion of Gene-Modified Mesenchymal Stem Cells into Tumors. International Journal of Radiation Oncology Biology Physics, 2009. 75(3): p. 843-853.
    13. Chen, F.H., et al., Radiotherapy Decreases Vascular Density and Causes Hypoxia with Macrophage Aggregation in TRAMP-C1 Prostate Tumors. Clinical Cancer Research, 2009. 15(5): p. 1721-1729.
    14. Dewhirst, M.W., Y.T. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response (vol 8, pg 425, 2008). Nature Reviews Cancer, 2008. 8(8).
    15. Karar, J. and A. Maity, Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biology & Therapy, 2009. 8(21): p. 1994-2001.
    16. Ren, X., et al., FOXM1 promotes allergen-induced goblet cell metaplasia and pulmonary inflammation. Mol Cell Biol, 2013. 33(2): p. 371-86.
    17. Liu, Y.H., et al., CD11b+Ly6G+cells inhibit tumor growth by suppressing IL-17 production at early stages of tumorigenesis. Oncoimmunology, 2016. 5(1).
    18. Youn, J.I., et al., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008. 181(8): p. 5791-802.
    19. O'connor, M.A., et al., Subpopulations of M-MDSCs from mice infected by an immunodeficiency-causing retrovirus and their differential suppression of T- vs B-cell responses. Virology, 2015. 485: p. 263-273.
    20. Sawanobori, Y., et al., Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 2008. 111(12): p. 5457-5466.
    21. Movahedi, K., et al., Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 2008. 111(8): p. 4233-4244.
    22. Fridman, W.H., et al., The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer, 2012. 12(4): p. 298-306.
    23. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013. 19(11): p. 1423-1437.
    24. Gaowa, A., et al., Potent anti-tumor effects of EGFR-targeted hybrid peptide on mice bearing liver metastases. Clinical & Experimental Metastasis, 2016. 33(1): p. 87-95.
    25. Alyahya, R., et al., Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. International Journal of Oncology, 2015. 46(3): p. 1225-1231.
    26. Loghavi, S., et al., Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology. Leuk Lymphoma, 2016: p. 1-9.
    27. Simmons, G.W., et al., Neurofibromatosis-1 Heterozygosity Increases Microglia in a Spatially and Temporally Restricted Pattern Relevant to Mouse Optic Glioma Formation and Growth. Journal of Neuropathology and Experimental Neurology, 2011. 70(1): p. 51-62.
    28. Rodero, M., et al., Polymorphism in the Microglial Cell-Mobilizing CX3CR1 Gene Is Associated With Survival in Patients With Glioblastoma. Journal of Clinical Oncology, 2008. 26(36): p. 5957-5964.
    29. Markovic, D.S., et al., Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. Journal of Neuropathology and Experimental Neurology, 2005. 64(9): p. 754-762.
    30. Shi, C. and E.G. Pamer, Monocyte recruitment during infection and inflammation. Nat Rev Immunol, 2011. 11(11): p. 762-74.
    31. Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 2016. 19(1): p. 20-27.
    32. Cunningham, C.L., V. Martinez-Cerdeno, and S.C. Noctor, Microglia Regulate the Number of Neural Precursor Cells in the Developing Cerebral Cortex. Journal of Neuroscience, 2013. 33(10): p. 4216-4233.
    33. Zheng, P.P., et al., Isocitrate dehydrogenase 1R132H mutation in microglia/macrophages in gliomas Indication of a significant role of microglia/macrophages in glial tumorigenesis. Cancer Biology & Therapy, 2012. 13(10): p. 836-839.
    34. Wang, S.C., et al., Radiation Therapy-Induced Tumor Invasiveness Is Associated with SDF-1-Regulated Macrophage Mobilization and Vasculogenesis. Plos One, 2013. 8(8).
    35. Nagaraj, S., et al., Altered recognition of antigen is a mechanism of CD8(+) T cell tolerance in cancer. Nature Medicine, 2007. 13(7): p. 828-835.
    36. Jackson, C.M., et al., Systemic Tolerance Mediated by Melanoma Brain Tumors Is Reversible by Radiotherapy and Vaccination. Clinical Cancer Research, 2016. 22(5): p. 1161-1172.
    37. Lohr, J., et al., Effector T-Cell Infiltration Positively Impacts Survival of Glioblastoma Patients and Is Impaired by Tumor-Derived TGF-beta. Clinical Cancer Research, 2011. 17(13): p. 4296-4308.
    38. Kmiecik, J., et al., Elevated CD3(+) and CD8(+) tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. Journal of Neuroimmunology, 2013. 264(1-2): p. 71-83.
    39. Kim, Y.H., et al., Tumour-infiltrating T-cell subpopulations in glioblastomas. British Journal of Neurosurgery, 2012. 26(1): p. 21-27.
    40. Kim, H.J. and H. Cantor, CD4 T-cell Subsets and Tumor Immunity: The Helpful and the Not-so-Helpful. Cancer Immunology Research, 2014. 2(2): p. 91-98.
    41. Corthay, A., et al., Primary antitumor immune response mediated by CD4(+) T cells. Immunity, 2005. 22(3): p. 371-383.
    42. Arina, A., L. Corrales, and V. Bronte, Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Seminars in Immunology, 2016. 28(1): p. 54-63.
    43. Munn, D.H. and V. Bronte, Immune suppressive mechanisms in the tumor microenvironment. Current Opinion in Immunology, 2016. 39: p. 1-6.
    44. Verschuere, T., et al., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. International Journal of Cancer, 2014. 134(4): p. 873-884.
    45. Abad, C., et al., Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. Journal of Leukocyte Biology, 2014. 95(2): p. 357-367.
    46. Corzo, C.A., et al., Mechanism Regulating Reactive Oxygen Species in Tumor-Induced Myeloid-Derived Suppressor Cells. Journal of Immunology, 2009. 182(9): p. 5693-5701.
    47. Raychaudhuri, B., et al., Myeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytes. Journal of Neuro-Oncology, 2015. 122(2): p. 293-301.
    48. Youn, J.I., et al., Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Journal of Leukocyte Biology, 2012. 91(1): p. 167-181.
    49. Jochems, C. and J. Schlom, Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Experimental Biology and Medicine, 2011. 236(5): p. 567-579.
    50. Ugel, S., et al., Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015. 125(9): p. 3365-3376.
    51. Chen, H.M., et al., Myeloid-Derived Suppressor Cells as an Immune Parameter in Patients with Concurrent Sunitinib and Stereotactic Body Radiotherapy. Clinical Cancer Research, 2015. 21(18): p. 4073-4085.
    52. Sato, E., et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18538-43.
    53. Wing, K. and S. Sakaguchi, Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunology, 2010. 11(1): p. 7-13.
    54. Shimizu, J., S. Yamazaki, and S. Sakaguchi, Induction of tumor immunity by removing CD25(+)CD4(+) T cells: A common basis between tumor immunity and autoimmunity. Journal of Immunology, 1999. 163(10): p. 5211-5218.
    55. Nishikawa, H. and S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Curr Opin Immunol, 2014. 27: p. 1-7.
    56. Sinha, P., V.K. Clements, and S. Ostrand-Rosenberg, Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. Journal of Immunology, 2005. 174(2): p. 636-645.
    57. Mazzoni, A., et al., Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. Journal of Immunology, 2002. 168(2): p. 689-695.
    58. Yang, R.C., et al., CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1(+)CD11b(+) myeloid cells. Cancer Research, 2006. 66(13): p. 6807-6815.
    59. Bunt, S.K., et al., Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 2006. 176(1): p. 284-290.
    60. Song, X.P., et al., CD11b(+)/Gr-1(+) immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1 beta-secreting cells. Journal of Immunology, 2005. 175(12): p. 8200-8208.
    61. Bunt, S.K., et al., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Research, 2007. 67(20): p. 10019-10026.
    62. Bronte, V., et al., Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood, 2000. 96(12): p. 3838-3846.
    63. Gabrilovich, D.I., et al., Mechanism of immune dysfunction in cancer mediated by immature Gr-1(+) myeloid cells. Journal of Immunology, 2001. 166(9): p. 5398-5406.
    64. Medina-Echeverz, J., et al., Successful Colon Cancer Eradication after Chemoimmunotherapy Is Associated with Profound Phenotypic Change of Intratumoral Myeloid Cells. Journal of Immunology, 2011. 186(2): p. 807-815.
    65. Nabizadeh, J.A., et al., The Complement C3a Receptor Contributes to Melanoma Tumorigenesis by Inhibiting Neutrophil and CD4+ T Cell Responses. J Immunol, 2016. 196(11): p. 4783-92.
    66. Martin, F., L. Apetoh, and F. Ghiringhelli, Controversies on the role of Th17 in cancer: a TGF-beta-dependent immunosuppressive activity? Trends Mol Med, 2012. 18(12): p. 742-9.
    67. Bruchard, M., et al., Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 2013. 19(1): p. 57-64.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE