簡易檢索 / 詳目顯示

研究生: 楊舒淳
Yang, Shu-Chun
論文名稱: Auto-doping Effect of InN/Si(111) Heterojunction on Electronic Characteristic
氮化銦/矽(111)異質介面的自摻雜效應之電性分析
指導教授: 葉哲良
Yeh, Jer-Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 102
中文關鍵詞: indium nitrideheterojunctionplasma assisted molecular-beam epitaxy (PA-MBE)synchrotron radiation photoemission spectroscopy (SR-PES)band offsetauto-doping effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Indium nitride (InN) is a prominent semiconductor material with the lowest effective mass, the highest mobility, and the highest saturation velocity in group-III nitrides. In addition, the revised bandgap value (0.7 eV) of InN has opportunities for implementing high-efficiency InN photovoltaic devices. Therefore, InN has highly potential applications for high speed, high frequency electronic device and high-efficiency photovoltaic devices. Since silicon (Si) is still a major material in semiconductor device, the integration of InN on Si(111) opens a new path toward advanced devices. However, the performances of InN/Si on electronic and photovoltaic devices are lower than prediction. In this study, the auto-doping effect on InN/Si heterojunction is investigated to explain the reason affected on electronic characteristic.

    InN film was grown on silicon substrates at growth temperature of 450 °C in 10-11 torr by plasma assisted molecular-beam epitaxy (PA-MBE) with a radio frequency (RF) nitrogen plasma source. From FESEM and TEM morphology, InN/p-Si is less compact than InN/n-Si. Exactly, the pore size of InN/p-Si and InN/n-Si are in the range of 100 - 300 nm and 50 - 150 nm, respectively. Thus, Hall mobility of InN/n-Si is higher than InN/p-Si. From Synchrotron Radiation Photoemission Spectroscopy (SR-PES) results, InN/p-Si and InN/n-Si are a type-II heterojunction and a type-III heterojunction, respectively. However, the auto-doping effect in InN/n-Si is more apparent than in InN/p-Si from X-ray photoelectron spectroscopy (XPS) and Auger Electron Spectroscopy (AES) results. From SR-PES and I-V results, InN/p-Si exhibits a diode characteristics and InN/n-Si is an ohmic contact. From the capacitance measurement, the interface carrier density can be deduced.

    In conclusion, the auto-doping effect on InN/n-Si(111) is more apparent than InN/p-Si(111), which affects the further electronic characteristics and applications. The electron accumulation on InN grown on n-Si(111) is serious as a result of more interface states originated from auto-doping effect. Therefore, the InN grown p-Si(111) is recommended to further advanced applications.


    ABSTRACT I ACKNOWLEDGEMENT II CONTENTS III LIST OF FIGURES V LIST OF TABLES X Chapter 1 Introduction 1 Chapter 2 Theory Background and Literature Reviews 3 2.1 Properties of Indium Nitride 3 2.1.1 Band Gap Energy 3 2.1.2 Surface Electron Accumulation 7 2.1.3 Mobility and Carrier Concentration 11 2.1.4 Piezoelectricity 17 2.2 Indium Nitride/Silicon Heterojunction 20 2.2.1 Band Alignment Theory 20 2.2.2 InN Growth on Si 23 2.2.3 Band Offset of InN/Si Heterojunction 28 2.2.4 Current-Voltage Characteristic of InN/Si Heterojunction 31 2.2.5 Structural Models of Solid-Solid Interfaces 33 2.3 Metal-Semiconductor Junction 40 2.3.1 Electrical Properties of Metal/InN 40 2.3.2 Electrical Properties of Metal/Si 41 Chapter 3 Experimental Methods 44 3.1 Growth of Wurtzite InN Epilayer on Si(111) 45 3.2 Characterizations of InN/Si 48 3.3 Synchrotron Radiation Photoemission Spectroscopy 54 Chapter 4 Results and Discussion 56 4.1 Morphology of InN/Si(111) 56 4.2 Raman Spectra of InN/Si(111) 64 4.3 Carrier Concentration and Hall Mobility of InN/Si(111) 66 4.4 Band Offset of InN/Si(111) 69 4.5 Element Composition of InN/Si(111) 75 4.6 Atomic Concentration Distribution of Diffusion Layer between InN and Si 77 4.7 Current-Voltage Characteristics of InN/Si 82 4.8 Capacitance-Voltage Characteristics of InN/Si 87 Chapter 5 Conclusion 95 Chapter 6 Future Studies 97 REFERENCE 100

    [1] A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen and M.A. Khan, Appl. Phys. Lett. 68, 818 (1996).
    [2] F. Bernardini and V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002).
    [3] A. Koukitu and H. Seki, Jpn. J. Appl. Phys. Part 2 36, L750 (1997).
    [4] S. Gwo, C.L. Wu, and C.H. Shen, Appl. Phys. Lett. 84, 3765 (2004).
    [5] C.L. Wu, C.H. Shen, H.W. Lin, H.M. Lee, and S. Gwo, Appl. Phys. Lett. 87, 241916 (2005).
    [6] T.L. Tansley and C.P. Foley, J. Appl. Phys. 59, 3241 (1986).
    [7] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett. 80, 968 (2002)
    [8] V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthm□ller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E.E. Haller, Phys. Stat. Sol. (b). 230, R4 (2002).
    [9] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
    [10] Motlan, E.M. Goldys, and T.L. Tansley, J. Cryst. Growth. 241, 165 (2002).
    [11] J.W. Trainor and K. Rose, J. Electron. Mater. 3, 821 (1974).
    [12] H. Lu, W.J. Schaff, and L.F. Eastman, Appl. Phys. Lett. 82, 1736 (2003).
    [13] I. Mahboob, T.D. Veal, L.F.J. Piper, and C.F. McConville, Phys. Rev. B. 69, 201307 (2004).
    [14] T.D. Veal and C.F. McConville, Phys. Rev. B. 64, 085311 (2001).
    [15] M. Noguchi, K. Hirakawa, and T. Ikoma, Phys. Rev. Lett. 82, 2243 (1991).
    [16] V.W.L. Chin, T.L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
    [17] T.L. Tansley and C.P. Foley, Electron. Lett. 20, 1066 (1984).
    [18] E. Bellotti, B.K. Doshi, and K.F. Brennan, J. Appl. Phys. 85, 916 (1999).
    [19] P.M. Asbeck, E.T. Yu, S.S. Lau, G.J. Sullivan, J.V Hove, and J.M. Redwing, Electron. Lett. 33, 1230 (1997).
    [20] R. Gaska, J.W. Yang, A.D. Bykhovski, M.S. Shur, V.V. Kaminski, and S.M. Soloviov, Appl. Phys. Lett. 72, 64 (1998).
    [21] E.T. Yu, X.Z. Dang, L.S. Yu, D. Qiao, P.M. Asbeck, and S.S. Lau, Appl. Phys. Lett. 73, 13 (1998).
    [22] C.L. Wu, H.M. Lee, C.T. Kuo, and S. Gwoa, Appl. Phys. Lett. 91, 042112 (2007).
    [23] M. J. Adams, and A. Nussbaum, Sol. Stat. Elec. 22, 783 (1979).
    [24] O. von Roos, Sol. Stat. Elec. 23, 1069 (1980).
    [25] R.L. Anderson, Sol. Stat. Elec. 5, 341 (1962).
    [26] S.M. Sze, Physics of Semiconductor Device, Wiley, New York, 125 (2007).
    [27] M.A. Afrailov, Infrared Phys. Tech. 45, 169 (2004).
    [28] A. Breed, K.P. Roenker, D. Todorova, Sol. Stat. Elec. 46, 2199 (2002).
    [29] Z.G. Qian, W.Z. Shen, H. Ogawa, and Q.X. Guo, J. Appl. Phys. 92, 3683 (2002).
    [30] B.R. Natarajan, A.H. Eltoukhy, J.E. Greene, and T.L. Barr, Thin Solid Films. 69, 201 (1980).
    [31] K.S.A. Butcher, H. Dou, E.M. Goldys, T.L. Tansley, and S. Srikeaw, Phys. Stat. Sol. C 0, 373 (2002).
    [32] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells. 35, 53 (1994).
    [33] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst. Growth. 137, 415 (1994).
    [34] T. Yodo, H. Ando, D. Nosei, and Y. Harada, phys. Stat. Sol. B 228, 21 (2001).
    [35] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett. 80, 968 (2002).
    [36] A. Yamamoto, Y. Yamauchi, T. Ogawa, M. Ohkubo, and A. Hashimoto, Inst. Phys. Conf. Ser. 142, 879 (1996).
    [37] A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and T. Saitoh, Sol. Stat. Elec. 41, 149 (1997).
    [38] T. Yodo, H. Yona, Y. Harada, A. Sasaki, M. Yoshimoto, Phys. Stat. Sol. C 0, 2802 (2003).
    [39] D. Briggs and M.P. Seah, Practical surface analysis, Wiley, New York, 164 (1983).
    [40] N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, and Y. Nagasawa, Handbook of X-ray photoelectron spectroscopy, JEOL, Akishima, appendix 4, 175 (1991).
    [41] M. Yoshimoto, T. Nakano, T. Yamashita, K. Suzuki, and J. Saraie, Proceedings of International Workshop on Nitride Semiconductors IPAP Conf. Ser.1, 186 (2000).
    [42] T. Yamaguchi, C. Morioka, K. Mizuo, M. Hori, T. Araki and Y. Nanishi and A. Suzuki, Compound Semiconductors: Post-Conf. Proc. International Symposium, 214-219 (2003).
    [43] S. Scalese, S. Grasso, M. Italia, and V. Privitera, J. Appl. Phys. 99, 113516 (2006).
    [44] S. Solmi, A. Parisini, M. Bersani, D. Giubertoni, V. Soncini, G. Carnevale, A. Benvenuti, A. Marmiroli, J. Appl. Phys. 92, 3 (2002).
    [45] H. Luth, Solid Surfaces, Interfaces and Thin Films, Springer, Berlin, 95 (2001).
    [46] H.B. Michaelson, IBM J. Rev. Develop. 22, 72 (1978).
    [47] H. Lu, W.J. Schaff, J. Hwang, H. Wu, G. Koley, L. F. Eastman, Appl. Phys. Lett. 79, 10 (2001).
    [48] D. Briggs M.P. Seah, Practical Surface Analysis Vol 1: Auger and X-ray Photoelectron Spectroscopy, Wiley, Chichester (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE