簡易檢索 / 詳目顯示

研究生: 陳冠妤
Chen, Kuan-Yu
論文名稱: 製備氧化鐵中空微球/石墨烯塗覆海綿並探討其於電磁波吸收之應用
Fabrication of Fe2O3 Hollow Microspheres/ Reduced Graphene Oxide Coated Sponge and Study of its Application on Electromagnetic Wave Absorption
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 黃繼遠
Huang, Chi-Yuan
嚴大任
Yen, Ta-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 電磁波吸收石墨烯氧化鐵海綿
外文關鍵詞: Electromagnetic wave absorption, Reduced graphene oxide, Hematite, Sponge
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究製備一種複合材料,可使電磁波有效地被輕薄的海綿所吸收。在材料選擇方面,以海綿為骨架,其多孔洞的結構賦予複合材料許多優點,如質輕、低密度及提供電磁波多重反射的結構。透過塗覆還原氧化石墨烯 (reduced Graphene Oxide, rGO) 於海綿骨架,rGO表面上的分子結構缺陷及官能基能夠造成電偶極的極化,使複合材料展現吸收電磁波的性質。三氧化二鐵因為具有較大的能隙,因此被選用作為降低rGO的介電性質,使得整體複合材料的介電性質更適用於減低電磁波的強度。除此之外,三氧化二鐵微球的中空結構可以更進一步提供電磁波在材料內部的多重反射。當電磁波進入海綿複合材料後,電磁波會在內部連通的通道中進行多重反射,而三氧化二鐵的中空結構也能有效地減弱入射的電磁波。複合海綿在8.2 - 12.4 GHz的X頻段下表現優異,可以屏蔽超過99%的電磁波,其中97%是藉由吸收損耗,由此可知,此複合材料是以吸收為主要屏蔽機制的電磁波屏蔽材料。


    In this work, we fabricate a porous composite via coating polyurethane (PU) sponge with reduced graphene oxide (rGO) and hematite (Fe2O3) hollow microspheres. Compared with impermeable shielding materials, porous materials are endowed with advantages such as lower density and high EM (Electromagnetic) wave-absorption capacities. Through coating rGO onto the skeleton of PU sponge, the composites could possess high EM waves absorption performance which originates from residual defects and functional groups on the rGO surface which could arise polarization of defects and dipoles. Based on large band gap, Fe2O3 is selected to reduce dielectric value of rGO, therefore, lead to moderate permittivity value of the sponge composites. Besides, the hollow structure of the Fe2O3 microspheres could further provide internal multiple scattering and reflection of EM waves. Consequently, when EM waves impinge on porous composite, it will undergo multiple reflection on the myriad rGO interfaces within the interconnecting pores. The addition of Fe2O3 hollow microspheres provide hierarchical structure within the composites, which could enhance the overall attenuation of incident EM waves effectively. Based on these designs, the porous composites could shield more than 99% of EM waves while more than 97% is contributed by absorption. Due to the low density and outstanding shielding effectiveness performance, our study demonstrates a promising approach of preparing absorption dominated EM interference shielding materials.

    摘要............................................................................................................................... I Abstract ......................................................................................................................... II 目次............................................................................................................................. IV 表目錄....................................................................................................................... VIII 圖目錄......................................................................................................................... IX 第一章 緒論.................................................................................................................. 1 1.1 前言..................................................................................................................... 1 1.2 研究動機............................................................................................................. 1 第二章 文獻回顧.......................................................................................................... 5 2.1 電磁波干擾理論................................................................................................. 5 2.2 電磁波屏蔽機制................................................................................................. 6 2.3 電磁波吸收材料............................................................................................... 10 2.3.1 電阻損耗型................................................................................................ 10 2.3.2 介電損耗型................................................................................................ 11 2.3.3 磁損耗型.................................................................................................... 13 2.4 碳材料應用於電磁波屏蔽............................................................................... 14 2.4.1 石墨烯之介紹............................................................................................ 15 2.4.2 石墨烯之製備方法.................................................................................... 16 2.4.3 石墨烯複合材料........................................................................................ 17 2.5 三氧化二鐵....................................................................................................... 18 2.6 孔洞複合材料................................................................................................... 19 第三章 實驗方法及分析............................................................................................ 33 3.1 實驗藥品........................................................................................................... 33 3.2 實驗分析儀器................................................................................................... 33 3.2.1 場發射掃描式電子顯微鏡........................................................................ 34 3.2.2 穿透式電子顯微鏡.................................................................................... 34 3.2.3 熱重量分析儀............................................................................................ 35 3.2.4 X 光繞射分析儀 ......................................................................................... 36 3.2.5 拉曼光譜儀................................................................................................ 36 3.2.6 X 射線光電子能譜儀 ................................................................................. 37 3.2.7 四點探針.................................................................................................... 37 3.2.8 向量網路分析儀........................................................................................ 38 3.2.8.1 矩形波導法......................................................................................... 38 3.2.8.2 同軸法................................................................................................. 38 3.2.8.3 自由空間法......................................................................................... 39 3.3 實驗步驟及方法............................................................................................... 40 3.3.1 製備碳球模板............................................................................................ 40 3.3.2 製備中空三氧化二鐵微球........................................................................ 40 3.3.3 製備氧化石墨烯........................................................................................ 41 3.3.4 製備石墨烯/三氧化二鐵塗覆海綿 .......................................................... 41 第四章 結果與討論.................................................................................................... 47 4.1 中空三氧化二鐵微球之材料分析.................................................................... 47 4.1.1 形貌觀察.................................................................................................... 47 4.1.2 熱重分析.................................................................................................... 48 4.1.3 X 光繞射光譜分析 ..................................................................................... 49 4.2 rGO/Fe2O3 複合海綿之材料分析 ..................................................................... 49 4.2.1 形貌觀察.................................................................................................... 49 4.2.2 拉曼光譜儀分析........................................................................................ 50 4.2.3 X 光繞射光譜分析 ..................................................................................... 51 4.2.3 X 射線光電子能譜分析 ............................................................................. 52 4.2.4 片電阻分析................................................................................................ 52 4.3 rGO/Fe2O3 複合海綿屏蔽效能分析 ................................................................. 53 4.3.1 不同rGO 含量之rGO 海綿 ..................................................................... 54 4.3.2 不同rGO 含量之rGO/Fe2O3 複合海綿 ................................................... 55 4.3.3 不同Fe2O3 含量之rGO/Fe2O3 複合海綿 ................................................. 56 4.4.4 厚度對於電磁波屏蔽效能的影響............................................................ 56 4.4.5 結構控制對於電磁波屏蔽效能的影響.................................................... 57 第五章 結論................................................................................................................ 71 References .................................................................................................................... 72

    [1] F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective, Composites Part B: Engineering 137 (2018) 260-277.
    [2] Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives, Journal of Materials Chemistry C 5(30) (2017) 7390-7403.
    [3] S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review, Composites Part A: Applied Science and Manufacturing 114 (2018) 49-71.
    [4] H.M. Narendra J, xGnP For Electromagnetic Interference Shielding Application, XG Sci 5 (2012) 1-11.
    [5] S. Gupta, N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon 152 (2019) 159-187.
    [6] C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon 140 (2018) 696-733.
    [7] N. Yang, J. Zeng, J. Xue, L. Zeng, Y. Zhao, Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/ carbon fiber multilayer composites, Journal of Alloys and Compounds 735 (2018) 2212-2218.
    [8] M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding, Journal of Materials Chemistry C 3(26) (2015) 6589-6599.
    [9] S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang, Y. Yuan, Y. Pei, A. Cao, Robust and Stable Cu Nanowire@Graphene Core–Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding, Small 14(23) (2018) 1800634.
    [10] H.-T. Liu, Y. Liu, B.-S. Wang, C.-S. Li, Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers, Chinese Physics Letters 32(4) (2015) 044102.
    [11] T. Wang, Y. Li, L. Wang, C. Liu, S. Geng, X. Jia, F. Yang, L. Zhang, L. Liu, B. You, X. Ren, H. Yang, Synthesis of graphene/α-Fe2O3 composites with excellent electromagnetic wave absorption properties, RSC Advances 5(74) (2015) 60114-60120.
    [12] S. Gupta, S.K. Sharma, D. Pradhan, N.-H. Tai, Ultra-light 3D reduced graphene oxide aerogels decorated with cobalt ferrite and zinc oxide perform excellent electromagnetic interference shielding effectiveness, Composites Part A: Applied Science and Manufacturing 123 (2019) 232-241.
    [13] B. Zhao, C. Ma, L. Liang, W. Guo, B. Fan, X. Guo, R. Zhang, An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets, CrystEngComm 19(26) (2017) 3640-3648.
    [14] D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption, Carbon 111 (2017) 722-732.
    [15] E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo, L. Peng, W. Gao, J. Ying, Z. Chen, C. Gao, Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding, Nanoscale 9(47) (2017) 18613-18618.
    [16] Y. Chen, Y. Li, M. Yip, N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Composites Science and Technology 80 (2013) 80-86.
    [17] T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties, Journal of Materials Chemistry 22(30) (2012) 15190-15197.
    [18] R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes, Advanced Materials 16(5) (2004) 401-405.
    [19] B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, Dielectric polarization in electromagnetic wave absorption: Review and perspective, Journal of Alloys and Compounds 728 (2017) 1065-1075.
    [20] Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber, ACS Applied Materials & Interfaces 7(47) (2015) 26226-26234.
    [21] B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling Hollow Fe3O4–Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material, ACS Applied Materials & Interfaces 8(6) (2016) 3730-3735.
    [22] Y. Bhattacharjee, D. Chatterjee, S. Bose, Core–Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 10(36) (2018) 30762-30773.
    [23] H. Wang, N. Li, W. Wang, J. Shi, Z. Xu, L. Liu, Y. Hu, M. Jing, L. Liu, X. Zhang, Bead nano-necklace spheres on 3D carbon nanotube scaffolds for high-performance electromagnetic-interference shielding, Chemical Engineering Journal 360 (2019) 1241-1246.
    [24] N. Li, G. Huang, H. Xiao, Q. Feng, S. Fu, Investigations on structure-dependent microwave absorption performance of nano-Fe3O4 coated carbon-based absorbers, Carbon 144 (2019) 216-227.
    [25] L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite, Carbon 145 (2019) 61-66.
    [26] X. Ma, B. Shen, L. Zhang, Y. Liu, W. Zhai, W. Zheng, Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application, Composites Science and Technology 158 (2018) 86-93.
    [27] Z. Min, H. Yang, F. Chen, T. Kuang, Scale-up production of lightweight high-strength polystyrene/carbonaceous filler composite foams with high-performance electromagnetic interference shielding, Materials Letters 230 (2018) 157-160.
    [28] M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: Polymer composites, Journal of Alloys and Compounds 688 (2016) 399-403.
    [29] C.-Y. Chen, N.-W. Pu, Y.-M. Liu, S.-Y. Huang, C.-H. Wu, M.-D. Ger, Y.-J. Gong, Y.-C. Chou, Remarkable microwave absorption performance of graphene at a very low loading ratio, Composites Part B: Engineering 114 (2017) 395-403.
    [30] L. Huang, J. Li, Z. Wang, Y. Li, X. He, Y. Yuan, Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane, Carbon 143 (2019) 507-516.
    [31] F. Xu, R. Chen, Z. Lin, X. Sun, S. Wang, W. Yin, Q. Peng, Y. Li, X. He, Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper, Journal of Materials Chemistry C 6(45) (2018) 12321-12328.
    [32] S. Li, W. Li, J. Nie, D. Liu, G. Sui, Synergistic effect of graphene nanoplate and carbonized loofah fiber on the electromagnetic shielding effectiveness of PEEK-based composites, Carbon 143 (2019) 154-161.
    [33] P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon 94 (2015) 494-500.
    [34] B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world, Nanoscale 6(11) (2014) 5754-5761.
    [35] K.-L. Zhang, J.-Y. Zhang, Z.-L. Hou, S. Bi, Q.-L. Zhao, Multifunctional broadband microwave absorption of flexible graphene composites, Carbon 141 (2019) 608-617.
    [36] H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon 142 (2019) 346-353.
    [37] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films, Advanced Functional Materials 19(16) (2009) 2577-2583.
    [38] S.M. Notley, Highly Concentrated Aqueous Suspensions of Graphene through Ultrasonic Exfoliation with Continuous Surfactant Addition, Langmuir 28(40) (2012) 14110-14113.
    [39] J. Lin, Y. Huang, S. Wang, G. Chen, Microwave-Assisted Rapid Exfoliation of Graphite into Graphene by Using Ammonium Bicarbonate as the Intercalation Agent, Industrial & Engineering Chemistry Research 56(33) (2017) 9341-9346.
    [40] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method, The Journal of Physical Chemistry C 113(11) (2009) 4257-4259.
    [41] C.D. Simpson, G. Mattersteig, K. Martin, L. Gherghel, R.E. Bauer, H.J. Räder, K. Müllen, Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers, Journal of the American Chemical Society 126(10) (2004) 3139-3147.
    [42] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306(5696) (2004) 666.
    [43] X. Gao, J. Jang, S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, The Journal of Physical Chemistry C 114(2) (2010) 832-842.
    [44] H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, Journal of Materials Chemistry C 5(3) (2017) 491-512.
    [45] X. Yuan, L. Cheng, Y. Zhang, S. Guo, L. Zhang, Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation, Materials & Design 92 (2016) 563-570.
    [46] G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material, Journal of Alloys and Compounds 652 (2015) 346-350.
    [47] T. Liu, Y. Pang, H. Kikuchi, Y. Kamada, S. Takahashi, Superparamagnetic property and high microwave absorption performance of FeAl@(Al, Fe)2O3 nanoparticles induced by surface oxidation, Journal of Materials Chemistry C 3(24) (2015) 6232-6239.
    [48] Y. Wang, D. Sun, G. Liu, W. Jiang, Synthesis of Fe3O4@SiO2@ZnO core–shell structured microspheres and microwave absorption properties, Advanced Powder Technology 26(6) (2015) 1537-1543.
    [49] Y. Li, J. Zhang, Z. Liu, M. Liu, H. Lin, R. Che, Morphology-dominant microwave absorption enhancement and electron tomography characterization of CoO self-assembly 3D nano-flowers, Journal of Materials Chemistry C 2(26) (2014) 5216-5222.
    [50] H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like alpha-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance, ACS Appl Mater Interfaces 7(8) (2015) 4744-50.
    [51] H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties, Powder Technology 269 (2015) 443-451.
    [52] Y. Chen, X. Liu, X. Mao, Q. Zhuang, Z. Xie, Z. Han, γ-Fe2O3–MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability, Nanoscale 6(12) (2014) 6440-6447.
    [53] H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption, Journal of Materials Chemistry A 1(30) (2013) 8547-8552.
    [54] J. Qi, X. Lai, J. Wang, H. Tang, H. Ren, Y. Yang, Q. Jin, L. Zhang, R. Yu, G. Ma, Z. Su, H. Zhao, D. Wang, Multi-shelled hollow micro-/nanostructures, Chemical Society Reviews 44(19) (2015) 6749-6773.
    [55] X. Xie, H. Yang, F. Zhang, L. Li, J. Ma, H. Jiao, J. Zhang, Synthesis of hollow microspheres constructed with α-Fe2O3 nanorods and their photocatalytic and magnetic properties, Journal of Alloys and Compounds 477(1) (2009) 90-99.
    [56] J. Liu, H.-B. Zhang, Y. Liu, Q. Wang, Z. Liu, Y.-W. Mai, Z.-Z. Yu, Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding, Composites Science and Technology 151 (2017) 71-78.
    [57] S. Naeem, V. Baheti, V. Tunakova, J. Militky, D. Karthik, B. Tomkova, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications, Carbon 111 (2017) 439-447.
    [58] B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding, ACS Applied Materials & Interfaces 8(12) (2016) 8050-8057.
    [59] A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding, Composites Part B: Engineering 149 (2018) 188-197.
    [60] S.T. Maciej Jaroszewski, Ajay V. Rane, Advanced Materials for Electromagnetic Shielding, 2019 John Wiley & Sons, Inc. 464 (2019).
    [61] B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, Carbon 102 (2016) 154-160.
    [62] Z. Wang, R. Wei, X. Liu, Fluffy and Ordered Graphene Multilayer Films with Improved Electromagnetic Interference Shielding over X-Band, ACS Applied Materials & Interfaces 9(27) (2017) 22408-22419.
    [63] Y.-J. Chen, Y. Li, B.T.T. Chu, I.T. Kuo, M. Yip, N. Tai, Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding, Composites Part B: Engineering 70 (2015) 231-237.
    [64] Y. Sun, S. Luo, H. Sun, W. Zeng, C. Ling, D. Chen, V. Chan, K. Liao, Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding, Carbon 136 (2018) 299-308.
    [65] D.G.R. William D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons Inc (2013).
    [66] M. Kuriakose, S. Longuemart, M. Depriester, S. Delenclos, A.H. Sahraoui, Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals, Physical Review E 89(2) (2014) 022511.
    [67] M. González, G. Mokry, M. de Nicolás, J. Baselga, J. Pozuelo, Carbon Nanotube Composites as Electromagnetic Shielding Materials in GHz Range, InTech (2016) 292.
    [68] X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew Chem Int Ed Engl 43(5) (2004) 597-601.
    [69] M. Li, W. Li, S. Liu, Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method, Journal of Materials Research 27(8) (2012) 1117-1123.
    [70] S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, α-Fe2O3multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention, Energy Environ. Sci. 7(2) (2014) 632-637.
    [71] M. Mohamadi, E. Kowsari, V. Haddadi-Asl, M. Yousefzadeh, Fabrication, characterization and electromagnetic wave absorption properties of covalently modified reduced graphene oxide based on dinuclear cobalt complex, Composites Part B: Engineering 162 (2019) 569-579.
    [72] S. Park, Y. Hu, J.O. Hwang, E.-S. Lee, L.B. Casabianca, W. Cai, J.R. Potts, H.-W. Ha, S. Chen, J. Oh, S.O. Kim, Y.-H. Kim, Y. Ishii, R.S. Ruoff, Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping, Nature Communications 3 (2012) 638.

    QR CODE