研究生: |
黃立達 Lee-Da Huang |
---|---|
論文名稱: |
永磁同步馬達驅動系統之前端轉換器與變頻器切換控制改善研究 SWITCHING CONTROL IMPROVEMENTS FOR FRONT-END CONVERTER AND INVERTER OF PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 217 |
中文關鍵詞: | 永磁同步馬達 、強健電流控制 、切換式整流器 、低頻切換 、高頻切換 、前端轉換器 、隨機頻率切換 、隨機變化磁滯帶切換 、振動降低 、換向前移 、弱磁 、電力品質 、操控特性評估 |
外文關鍵詞: | Permanent magnet synchronous motor, robust current control, switching mode rectifier, low-frequency switching, high-frequency switching, front-end converter, random frequency switching, randomly varying band hysteresis switching, vibration reduction, commutayion advanced shift, field-weakening, power quality, driving performance evaluation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在建構一數位控制永磁同步馬達驅動系統,並從事其前端轉換器與驅動變頻器之切換控制改善研究。首先探究PMSM之結構、主導方程式及等效電路參數之估測。接著建構一以數位信號處理器為主之實驗用PMSM驅動系統,除妥善之組件設計組裝外,應用強健斜率比較電流控制,使馬達具良好之線圈電流追控及運轉驅動特性。
為使馬達驅動系統之直流鏈電壓可調控,而增進其驅動性能,本論文接著研製一以AC開關為主之升壓型切換式整流器,以及從事其低頻及高頻切換之有關控制及性能評估測試。另外,亦建構一標準升壓型SMR以參與比較研習。在降低SMRs之振動及噪音之研究方面,對於低頻SMR,本論文係採外加輔助小脈波之三階段激磁法;而對於高頻SMR則採任意變化磁滯帶及任意變化切換頻率技巧。各法均詳加介紹其原理及性能實測比較評定。
最後在高速驅動特性改良方面,首先探究瞭解一具前端轉換器PMSM驅動系統之操控關鍵事務及介紹一些有效提高電壓利用率之修正式PWM機構,瞭解其實現及輸出性能之比較特性。接著研習所提之控制策略,包含強健電流追蹤誤差消除、換向前移、弱磁控制及直流鏈增壓,並以一些實測結果比較評估這些策略於線圈電流及速度動態響應等之效能。
關鍵詞:永磁同步馬達、強健電流控制、切換式整流器、低頻切換、高頻切換、前端轉換器、隨機頻率切換、隨機變化磁滯帶切換、振動降低、換向前移、弱磁、電力品質、操控特性評估。
This thesis is mainly concerned with the establishment of a digitally controlled permanent magnet synchronous motor (PMSM) drive and the switching control improvements for its front-end converter and inverter. First, the structure, governing equations and equivalent circuit parameter estimation of PMSM are explored. Then an experimental digital signal processor (DSP) based PMSM drive is constructed. In addition to the proper design and implementation of system constituted components, the robust ramp-comparison (RC) current control is applied to yield good winding current tracking and driving characteristics.
Secondly, in order to enhance the motor driving performance through adjustable DC-link voltage, this thesis designs and implements an AC-switch based switching- mode rectifier (SMR), and performs its low frequency (LF) and high frequency (HF) switching controls and performance evaluation. In this stage, a standard boost SMR is also formed and used for comparative study. In the vibration and acoustic noise reductions, the three-stage excitation technique using auxiliary narrow pulse is employed for LF SMR. As to the HF SMR, the randomly varying band hysteresis current-controlled PWM (CCPWM) scheme and the random frequency RC CCPWM scheme are proposed. Theoretical basis and performance assessment for each approach are introduced in detail.
Finally in the high-speed operation performance improvement study, some operating key issues for a PMSM drive are first comprehended, and some modified PWM schemes for increasing the inverter voltage utilization are introduced, wherein the comparative features in realization and output performance of all schemes are understood. Then accordingly, the control approaches are proposed, which include robust current tracking error elimination, commutation advanced shift, field-weakening and DC-link voltage boosting. And some experimental results are provided to perform the comparisons of winding current and speed dynamic responses between these approaches.
Key words: Permanent magnet synchronous motor, robust current control, switching-mode rectifier, low-frequency switching, high-frequency switching, front- end converter, random frequency switching, randomly varying band hysteresis switching, vibration reduction, commutation advanced shift, field-weakening, power quality, driving performance evaluation.
A. Fundamentals of AC Motor Drives
[1] J. M. D. Murphy and F. G. Turnbull, Power Electronic
Control of AC Motors, Pergamon Press, Oxford, 1988.
[2] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis
of Electric Machine and Drive System, New York: The
Institute of Electrical and Electronics Engineers,
Inc., 1995.
[3] R. Krishnan, Switched Reluctance Motor Drives:
Analysis, Design and Application, New York, CRC Press,
2001.
[4] B. K. Bose, Modern Power Electronics and AC Drives. New
Jersey: Prentice Hall Inc., 2002.
[5] D. C. Hanselman, Brushless Permanent-Magnet Motor
Design, New York: McGraw Inc., 1994.
[6] S. Kawano, H. Murakami and N. Nishiyama, “High
performance design of an interior permanent magnet
synchronous motor for electric vehicles,” PCC-Nagoka’
97, pp. 33-36, 1997.
[7] T. D. Batzel and K. Y. Lee, “Electric propulsion with
the sensorless permanent magnet synchronous motor:
model and approach,” IEEE Trans. Energy Conversion,
vol. 20, no.4, pp. 818-825, 2005.
[8] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y.
Takeda,“The performance comparison of SPMSM, IPMSM and
SynRM in use as air conditioning compressor,” IEEE
Industry Applications Conference, vol. 2, pp. 840-845,
1999.
[9] G. L. Donner, W. L. Subler and S. T. Evon, “A motor
primer- part I,” IEEE Trans. Ind. Applicat., vol. 36,
no. 5, pp. 1455-1466, 2000.
[10] G. L. Donner, W. L. Subler and S. T. Evon, “Motor
primer- part II,” IEEE Trans. Ind. Applicat., vol.
38, no. 4, pp. 955-965, 2002.
[11] G. L. Donner, W. L. Subler and S. T. Evon, “A motor
primer- part III,” IEEE Industry Applications
Conference, pp. 137-146, 2002.
[12] B. K. Oakes, G. Donner and S. T. Evon, “Motor primer- part IV,” IEEE Trans. Ind. Applicat., vol. 40, no. 5,
pp. 1441-1447, 2004.
B. Modeling and Parameter Estimation
[13] P. Pillay and R. Krishnan, “Modeling, simulation and
analysis of permanent magnet motor drives, part I: the
permanent-magnet synchronous motor drive,” IEEE
Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273,
1989.
[14] S. Weisgerber, A. Proca and A. Keyhani, “Estimation
of permanent magnet motor parameters,” IEEE Industry
Applications Conference, vol. 1, pp. 29-34, 1997.
[15] F. F. Bernal, A. G. Cerrada and R. Faure,
“Determination of parameters in interior permanent-
magnet synchronous motors with iron losses without
torque measurement,” IEEE Trans. Ind. Applicat., vol.
37, no. 5, pp. 1265-1272, 2001.
[16] N. Urasaki, T. Senjyu and K. Uezato, “A novel
calculation method for iron loss resistance suitable
in modeling permanent-magnet synchronous motors,”
IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 41-
47, 2003.
[17] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A
saturating lumped-parameter model for an interior PM
synchronous machine,” IEEE Trans. Ind. Applicat.,
vol. 38, no. 3, pp. 645-650, 2002.
[18] A. B. Proca, A. Keyhani, A. El-Antably, Lu Wenzhe and
Min Dai, “Analytical model for permanent magnet
motors with surface mounted magnets,” IEEE Trans.
Energy Conversion, vol. 18, no. 3, pp. 386-391, 2003.
[19] S. Moreau, R. Kahoul and J. P. Louis, “Parameters
estimation of permanent synchronous machine without
adding extra-signal as input excitation,” IEEE
International Symposium Ind. Electronics, vol. 1, pp.
371-376, 2004.
[20] IEC 34-2: Methods for determining losses and
efficiency of rotating electrical machinery from tests
(excluding machines for traction vehicles),
International Electrotechnical committee, Nov. 1996.
C. Current and Speed Controls
[21] M. P. Kazmierkowski and L. Malesani, “Current control
techniques for three phase voltage-source PWM
converters: a survey,” IEEE Trans. Ind. Electron.,
vol. 45, no. 5, pp. 691-703, 1998.
[22] D. Y. Ohm and R. J. Oleksuk, “On practical digital
current regulator design for PM synchronous motor
drives,” IEEE Applied Power Electronics Conference
and Exposition, vol. 1, pp. 56-63, 1998.
[23] T. H. Chen, K. C. Huang and C. M. Liaw, “High-
Frequency switching-mode power amplifier for shaker
armature excitation,” Proc. IEE Electric Power
Applicat., vol. 144, no. 6, pp. 415-422, 1997.
[24] M. N. Uddin, T. S. Radwan, G. H. George and M. A.
Rahman, “Performance of current controllers for VSI-
fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol.
36, no. 6, pp. 1531-1538, 2000.
[25] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P.
Y. Yu and J. M. Huang, “Robust current control for
brushless DC motor,” Proc. IEE Electric Power
Applicat., vol. 147, no. 6, pp. 503-512, 2000.
[26] D. N. Zmood and D. G. Holmes, “Stationary frame
current regulation of PWM inverter with zero steady
state error,” IEEE Trans. Power Electron., vol. 18,
no. 4, pp. 814-822, 2003.
[27] N. Mohan, T. M. Undeland and W. P. Robbims, Power
Electronics: Converters, Applications and Design. New
York: John Wiley & Sons, 2003.
[28] J. Bastos, A. Monti and E. Santi, “Design and
implementation of a nonlinear speed control for a PM
synchronous motor using the synergetic approach to
control theory,” IEEE Power Electron. Specialists
Conf., vol. 5, pp. 3397-3402, 2004.
[29] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad,
“Robust speed control of PMSM drive system with lag
time compensation,” IEEE International Conference on
Electrical, Electronic and Computer Engineering, pp.
823-829, 2004.
[30] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified
fuzzy-logic-based MTPA speed control of IPMSM drive,”
IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1529-
1535, 2004.
[31] T. S. Radwan and M. M. Gouda, “Intelligent Speed
Control of Permanent Magnet Synchronous Motor Drive
Based-on Neuro-Fuzzy Approach,” PEDS Power
Electronics and Drives Systems, vol. 1, pp. 602-606,
2005.
[32] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid
model reference adaptive speed control for vector
controlled permanent magnet synchronous motor drive,”
Power Electronics and Drives Systems, vol. 1, pp. 618-
623, 2005.
D. Performance Improvement Control
[33] H. C. Chen and C. M. Liaw, “Sensorless control via
intelligent commutation tuning for brushless DC
motor,” Proc. IEE Electric Power Applicat., vol. 146,
no. 6, pp. 678-684, 1999.
[34] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang,
“Robust current control and commutation tuning for an
IPMSM drive,” IEEE Applied Power Electronics
Conference and Exposition, vol. 2, pp. 1045-1051, 2003.
[35] C. Mademlis, J. Xypteras and N. Margaris, “Loss
minimization in surface permanent-magnet synchronous
motor drives,” IEEE Trans. Ind. Electorn., vol. 47,
no. 1, pp. 115-122, 2000.
[36] R. Monajemy and R. Krishnan, “Implementation
strategies for concurrent flux weakening and torque
control of the PM synchronous motor,” IEEE Industry
Applications Conference, vol. 1, pp. 238-245, 1995.
[37] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H.
Lam, “A modular control scheme for PMSM speed control
with pulsating torque minimization,” IEEE Trans. Ind.
Electorn., vol. 51, no. 3, pp. 526-536, 2004.
[38] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-
ripple reduction in PM synchronous motor drives using
repetitive current control,” IEEE Trans. Power
Electorn., vol. 20, no. 6, pp. 1423-1431, 2005.
[39] T. M. Jahns, “Component rating requirements for wide
constant power operation of interior PM synchronous
machine drives,” IEEE Industry Applications
Conference, vol. 3, pp. 1697-1704, 2000.
[40] T. Schneider, T. Koch and A. Binder, ”Comparative
analysis of limited field weakening capability of
surface mounted permanent magnet machines,” IEE
Proceedings Electric Power Applications, vol. 151, no.
1, pp. 76-82, 2004.
[41] M. N. Uddin, T. S. Radwan and M. A. Rahman,
“Performance of interior permanent magnet motor drive
over wide speed range,” IEEE Trans. Energy
Conversion, vol. 17, no. 1, pp. 79-84, 2002.
[42] J. L. Chen, “Performance improvement study for a
permanent magnet synchronous motor drive with variable-
voltage DC link,” M. S. Thesis, Department of
Electrical Engineering, National Tsing Hua University,
ROC, 2004.
E. Modulation Techniques
[43] K. Taniguchi and A. Okumura, “A PAM inverter system
for vector control of induction motor,” IEEE Power
Conversion Conference, pp. 478-483, 1993.
[44] F. D. Kieferndorf, M. Forster and T. A. Lipo,
“Reduction of DC bus capacitor ripple current with
PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol.
40, no. 2, pp. 607-614, 2004.
[45] J. Holtz, “Pulsewidth modulation- a survey,” IEEE
Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420,
1992.
[46] A. M. Hava, R. J. Kerkman and T. A. Lipo, “A high-
performance generalized discontinuous PWM algorithm,”
IEEE Trans. Ind. Applicat., vol. 34, no. 5, pp. 1059-
1071, 1998.
[47] H. W. Van Der Broeck, “Analysis of the harmonics in
voltage fed inverter drives caused by PWM schemes with
discontinuous switching operation,” Conf. Rec.
European Power Electronics Conf., pp. 261–266, 1991.
[48] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Carrier-
based PWM-VSI over- modulation strategies: Analysis,
comparison, and design,” IEEE Trans. Power Electron.,
vol. 13, pp. 674–689, July 1998.
[49] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple
analytical and graphical methods for carrier-based PWM-
VSI drives,” IEEE Trans. Power Electron., vol. 14,
no. 1, pp. 49-61, Jan. 1999.
[50] A. M. Hava, S. K. Sul, R. J. Kerkman and T. A. Lipo,
“Dynamic overmodulation characteristics of triangle
intersection PWM methods,” IEEE Trans. Ind.
Applicat., vol. 35, no. 4, pp. 896-907, 1999.
F. Switching Mode Rectifiers
[51] I. Suga, M. Kimata, Y. Ohnishi and R. Uchida, “New
switching method for single-phase AC to DC
converter,” IEEE Power Conversion Conference, pp. 93-
98, 1993.
[52] M. S. Dawande and G. K. Dubey, “Single phase switch
mode rectifiers,” IEEE International Conference on
Power Electronics, Drives and Energy Systems, vol. 2,
pp. 637-643, 1996.
[53] A. Kandianis and S. N. Manias, “A comparative
evaluation of single-phase SMR converters with active
power factor correction,” IEEE International
Conference on Industrial Electronics, Control and
Instrumentation, pp. 244-249, 1994.
[54] W. Huai and I. Batarseh, “Comparison of basic
converter topologies for power factor correction,” in
Proc. IEEE Southeastcon, pp. 348-353, 1998.
[55] J. A. Pomilio and G. Spiazzi, “A low-inductance line-
frequency commutated rectifier complying with EN 61000-
3-2 standards,” IEEE Trans. Power Electron., vol. 17,
no. 6, pp. 963-970, 2002.
[56] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with
100Hz switching frequency providing output voltage
stabilization and compliance with EMC standards,”
IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-
193, 2000.
[57] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J.
Uceda, “Single phase power factor correction: a
survey,” IEEE Trans. Power Electron., vol. 18, no. 3,
pp. 749-755, May 2003.
[58] G. Moschopoulos and P. Jain, “Single-phase single-
stage power-factor-corrected converter topologies,”
IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35,
2005.
[59] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode
rectifier with digital robust ripple compensation and
current waveform controls,” IEEE Trans. Power
Electron., vol. 19, no. 2, pp. 560-566, 2004.
[60] B. Singh, B. P. Singh and M. Kumar, “PFC converter
fed PMBLDC motor drive for air conditioning,” IE(I)
Journal-EL, vol. 84, pp. 22-27, June 2003.
G. Sensorless Control
[61] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review
of sensorless methods for brushless DC ,” IEEE
Industry Applications Conference, vol. 1, pp. 143-150,
1999.
[62] V. Petrovic and A. M. Stankovic, “Saliency-based
position estimation in PM synchronous motors,” IEEE
Industry Applications Conference, vol. 2, pp. 801-806,
2001.
[63] B. Terzic and M. Jadric, “Design and implementation
of the extended Kalman filter for the speed and rotor
position estimation of brushless DC motor,” IEEE
Trans. Ind. Electron., vol. 48, no. 6, pp. 1065-1073,
2001.
[64] M. Tursini, R. Petrella and F. Parasiliti, “Initial
rotor position estimation method for PM motors,” IEEE
Trans. Ind. Applicat., vol. 39, no. 6, pp.1630-1640,
2003.
[65] M. E. Haque, L. Zhong and M. F. Rahman, “A sensorless
initial rotor position estimation scheme for a direct
torque controlled interior permanent magnet
synchronous motor drive,” IEEE Trans. Power
Electron., vol. 18, no. 6, pp. 1376-1383, Nov. 2003.
[66] F. Briz, M. W. Degner, J. M. Guerrero, A. Zamarron and
R. D. Lorenz, “Implementation issues affecting the
performance of carrier signal injection based
sensorless controlled AC drives,” IEEE Conf. Ind.
Applicat., vol. 4, pp. 2645-2652, 2001.
[67] M. Boussak, “Implementation and experimental
investigation of sensorless speed control with initial
rotor position estimation for interior permanent
magnet synchronous motor drive,” IEEE Trans. Power
Electron., vol. 20, no. 6, pp.1413-1422, Nov. 2005.
[68] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda,
“Sensorless control strategy for salient-pole PMSM
based on extended EMF in rotating reference frame,”
IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-
1061, 2002.
[69] S. Bolognani, L. Tubiana and M. Zigliotto, “Extended
kalman filter tuning in sensorless PMSM drives,” IEEE
Trans. Ind. Applicat., vol. 39, no. 6, pp. 1741-1747,
2003.
H. Random Switching, Vibration and Acoustic Noise
Reductions
[70] T. G. Habetler and D. M. Divan, “Acoustic noise
reduction in sinusoidal PWM drives using a randomly
modulated carrier,” IEEE Trans. Power Electron., vol.
6, no. 3, pp. 356-363, 1991.
[71] R. L. Kirlin, S. Kwok, S. Legowski and A. M.
Trzynadlowski,“Power spectra of a PWM inverter with
randomized pulse position,” IEEE Trans. Power
Electron., vol. 9, no. 5, pp. 463-472, 1994.
[72] S. Y. R. Hui, S. Sathiakumar and K. K. Sung, “Novel
random PWM schemes with weighted switching decision,”
IEEE Trans. Power Electron., vol. 12, no. 6, pp. 945-
951, 1997.
[73] G. A. Covic and J. T. Boys, “Noise quieting with
random PWM AC drives,” IEE Proc-Electr Power
Applicat., vol. 145, no. 1, pp. 1-10, 1998.
[74] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu,
“Analysis, design, and implementation of a random
frequency PWM inverter,” IEEE Trans. Power Electron.,
vol. 15, no. 5, pp. 843-854, 2000.
[75] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter
using existing system background noise: analysis,
design and implementation,” IEE Proc.-Electr. Power
Appl., vol. 147, no. 1, pp. 45-54, 2000.
[76] B. J. Kang and C. M. Liaw, “Random hysteresis PWM
inverter with robust spectrum shaping,” IEEE Trans.
Aerospace and Electronic Systems, vol. 37, no. 2, pp.
619-629, 2001.
[77] V. C. Valchey, D. M. Kovachey and A. P. Van den
Bossche, “A practical approach to randomized pulse-
width modulation,” IEEE Proc. IECON, pp. 514-518,
2005.
[78] F. Blaabjerg and J. K. Pedersen, “ Digital
implemented random modulation strategies for AC and
switched reluctance drives,” IEEE Proc. IECON, vol.
2, no. 3, pp. 676-682, 1993.
[79] S. H. Li and C. M. Liaw, “On the DSP-based switch-
mode rectifier with robust varying-band hysteresis PWM
scheme,” IEEE Trans. on Power Electronics, vol. 16,
no. 6, pp. 1417-1425, 2004.
[80] M. Brackley and C. Pollock, ”Analysis and reduction
of acoustic noise from a brushless DC drive,” IEEE
Trans. Ind. Applicat., vol. 36, no. 3, pp. 772-777,
2000.
[81] Y. Asano, Y. Honda, H. Murakami, Y. Takeda and S
Morimoto, “Novel noise improvement technique for a
PMSM with concentrated winding,” Power Conversion
Conference PCC Osaka, vol. 2 pp. 460-465, 2002.
[82] S. Yu and R. Tang, “Electromagnetic and mechanical
characterizations of noise and vibration in permanent
magnet synchronous machines,” IEEE Trans. Magnetics,
vol. 42, no. 4, pp. 1335-1338, 2006.
[83] S. J. Yang, Low-Noise Electrical Motors, Clarendon
Press, Oxford, 1981.
[84] P. L. Timar, Noise and Vibrations of Electrical
Machines, Elsevier, Amsterdam/ New York, 1989.
I. DSP-Based Digital Control and Digital Signal Processor
[85] F. Nekoogar and G. Moriarty, Digital Control Using
Digital Signal Processing, Prentice Hall PTR, New
Jersey, 1999.
[86] G. F. Franklin, J. D. Powell and A. Emami-Naeini,
Feedback Control of Dynamic System, 4th ed. Prentice
Hall Inc., 2002.
[87] F. Moynihan, ”High-Performance Motion Control,”
Analog Devices Inc., USA, 1999.
[88]“Considerations for selecting a DSP processor,”
Application Note, AN-393, 1994.
[89]“Single-Chip, DSP-Based High Performance Motor
Controller ADMC 401,” Analog Devices Inc., 2000.
[90]“DSP Selection Guide,” Analog Devices Inc., 2000.
[91]“ADSP-2100 Family User’s Manual,” Analog Devices
Inc., 1995.