研究生: |
何名元 He, Ming-Yuan |
---|---|
論文名稱: |
二維反鐵磁絕緣體NiPS3中的閘極可調光致發光 Gate-tunable photoluminescence in 2D antiferromagnetic insulator NiPS3 |
指導教授: |
劉昌樺
Liu, Chang-Hua |
口試委員: |
張祐嘉
Chang, You-Chia 陳國平 Chen, Kuo-Ping |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 二維材料 、反鐵磁 、光致發光 、電荷轉移型絕緣體 |
外文關鍵詞: | 2-D materials, antiferromagnetism, photoluminescence, charge transfer insulator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反鐵磁材料具備太赫茲共振、高儲存密度以及無雜散場的特性,讓該材料在記憶體的應用上極具潛力,但是反鐵磁靜磁矩為零的特性,使得反鐵磁的磁序和自旋不易被量測。二維反鐵磁材料NiPS3最近引起了極大的關注,這是因為NiPS3表現出強烈的磁性-激子偶合,進而導致超尖銳的線性偏振光致發光(PL),因此NiPS3的對稱破缺磁序可以用光學技術探測。
在本論文中,我們的目的是了解改變摻雜是否會影響NiPS3的反鐵磁特性。為此,我們製造了NiPS3場效電晶體。電傳輸測量表明NiPS3是n型摻雜,並且通過掃描閘極電壓能有效地調整材料的費米能階。在此基礎上,我們進一步研究了 NiPS3 PL的強度和線性二向色性與施加閘極電壓之間的關係。結果清楚地揭示了當NiPS3調整為n摻雜時,其PL強度會降低而線性偏振度則會增加,這些表明了對二維反鐵磁性進行電控制的可能性。
The 2D antiferromagnetic material NiPS3 has recently attracted great attentions. This is because NiPS3 exhibits strong magnetic-excitons coupling, which leads to ultra-sharp linearly polarized photoluminescence (PL). The symmetry breaking magnetic order of NiPS3 can be probed by using the optical technique.
In this thesis, our aim is to understand whether varying the doping of NiPS3 would affect its antiferromagnetic properties. To achieve this, we fabricate a NiPS3 field effect transistor. Our electrical transport measurement indicates that NiPS3 is N-doped and its Fermi level can be effectively tuned by sweeping the gate voltages. Built on this foundation, we further investigate the PL intensity and linear dichroism of NiPS3 as a function of applied gate voltages. Our results clearly unveil that when tuning NiPS3 into N-doped, its PL intensity (degree of linear polarization) would decrease (increase). These suggest the possibility of electric control of the 2D antiferromagnetism.
[1] Xui, K. et al. Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. Nano Lett,17,1065−1070(2017).
[2] Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature. 603, 259–264 (2022).
[3] Kin Fai Mak & Jie Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics. 10, 216–226 (2016).
[4] Mak, K, F. et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. PRL. 105, 136805 (2010).
[5] Chernikov, A. et al. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. PRL. 113, 076802 (2014).
[6] Mak, K, F. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology. 7, 494–498 (2012).
[7] Xu, X. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics volume. 10, 343–350 (2014).
[8] Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nature Physics. 12, 144–149 (2016).
[9] Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nature Physics. 12, 139–143 (2016).
[10] Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology. 10, 270–276 (2015).
[11] Matsuoka, T. et al. Pressure-Induced Insulator–Metal Transition in Two-Dimensional Mott Insulator NiPS3. J. Phys. Soc. 90, 124706 (2021).
[12] Qian, X. et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science. 346, 1344–1347 (2014).
[13] Fei, Z. et al. Edge conduction in monolayer WTe2. Nature Physics. 13, 677–682 (2017).
[14] Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetic in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).
[15] Gong, C .et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature volume. 546,265–269 (2017).
[16] Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016).
[17] Tian, Y. et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).
[18] Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546, 270–273 (2017). Nature Nanotechnology. 13, 544–548 (2018).
[19] Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nature Nanotechnology. 13, 544–548 (2018).
[20] Li, J, X. et al. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nature Nanotechnology. 17, pages721–728 (2022).
[21] Shikin, A, M. et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4. Scientific Reports. 10, 13226 (2020).
[22] Seyler, K, L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nature Physics. 14, 277–281 (2018).
[23] Kuo, C, T. et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals. Scientific Reports. 6, 20904 (2016).
[24] Lee, J, U. et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 16, 12, 7433–7438(2016).
[25] Lee, A. et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. APL Materials. 4, 086108 (2016).
[26] Kim, Y, S. et al. Charge-Spin Correlation in van der Waals Antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).
[27] Lane, C. et al Thickness dependence of electronic structure and optical properties of a correlated van der Waals antiferromagnetic NiPS3 thin film. Phys. Rev. B102, 075124, (2020).
[28] Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nature Nanotechnology. 16, 655–660 (2021).
[29] Ergecen, Emre. et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet. Nature Communications. 13, 98 (2022).
[30] Wang, Z. et al. Electronic Raman scattering in the 2D antiferromagnet NiPS3. Sci Adv. 8, 2 (2022).
[31] Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci Adv. 7, 23 (2021).
[32] Belvin, C, A. et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nature Communications. 12, 4837 (2021).
[33] Li, Y. et al. Topological superconductivity in Ni-based transition metal trichalcogenides. Phys. Rev. B 100, 214513 (2019).
[34] Lancon, D. et al. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).
[35] Wildes, A, R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
[36] Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).
[37] Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).
[38] Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nature Communications. 10, 345 (2019).
[39] Ho, C, H. et al. The band-edge excitons observed in few-layer NiPS3. npj 2D Materials and Applications. 5, 8 (2021).
[40] Kang, S. et al.Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature volume. 583, 785–789 (2020).
[41] Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nature Nanotechnology. 17, 1060–1064, (2022).
[42] Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nature Materials. 20, 964–970 (2021).
[43] Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nature Communications. 7,13017 (2016).
[44] Peng, H. et al. Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci Rep. 2, 442. (2012).
[45] Wang, F. et al. Defect-mediated ferromagnetism in correlated two-dimensional transition metal phosphorus trisulfides. Science advances. 7, 43. (2021).
[46] Yan, M. et al. Correlations in the Electronic Structure of van der Waals NiPS3 Crystals: An X-ray Absorption and Resonant Photoelectron Spectroscopy Study. J. Phys. Chem. Lett. 12, 2400−2405. (2021)
[47] Jenjeti R. et al Field Effect Transistor Based on Layered NiPS3. Scientific Reports, 8586 (2018).
[48] Zhang, Y, J. et al. Electrically Switchable Chiral Light-Emitting Transistor. Science. 344, (2014).
[49] Chu, C, H. End-Bonded Metal Contacts on WSe2 Field Effect Transistors. ACS Nano. 13, 8146-8154(2019).
[50] Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. NA T U RE. 94, 563 (2018).