研究生: |
蔡怡芝 Tsai, Yi-Chih |
---|---|
論文名稱: |
紫外光引起DNA損傷其修復過程中間隔填補受酚類化合物延遲的研究 Delay of gap filling during repair of UV-induced DNA damage by phenolic group containing compounds |
指導教授: |
劉銀樟
Liu, Yin-Chang |
口試委員: |
黃海美
Huang, Haimei 王慧菁 Wang, Hui-Ching 方偉宏 Fang, WH 賴金美 Lai, Jin-Mei 李岳倫 Lee, Yueh-Luen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 核甘酸修護 、鹼機修護 、秋水仙胺 、蜂膠 、延遲 、間隙填補 |
外文關鍵詞: | NER, BER, Colcemid, Propolis, Delay, gap filling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在之前的研究中我們已知秋水仙胺會抑制受紫外光照射細胞生長。在更進一步的研究中我們已知秋水仙胺可抑制核甘酸切除修復的間隙修補步驟。但是秋水仙胺是如何抑制修補的這個機制我們依然不十分清楚。在本研究中我們已證明(1)氧化損傷所造成的核修護間隙延遲,可由一些傳統的氧化試劑誘發,例如 過氧化氫,甲基萘醌,甲萘醌,我們推論核甘酸修復及鹼機修護共同發生時所造成競爭現象,造成了間隙延遲。(2)在本篇研究中,我們假設蜂膠中的類黃酮化合物被當成短暫的電子攜帶體將電子傳送到氧分子,隨後產生超氧自由基並形成過氧化氫來造成DNA 的氧化損傷。(3)大量的表現增殖細胞核抗原,可以減少抑制間隙填補現象,這個結果表示增殖細胞核抗原在核甘酸修復和鹼基修復都扮演重要的角色,但是連接酶I與瓣狀內切酶並沒有和增殖細胞核抗原有相同的效應。
In previous study, we have known the colcemid inhibit UV-irradiated cell growth. Further, we also find the colcemid hinder the gap filling of nucleotide excision repair (NER). However, how the colcemid hamper the gap filling, the mechanism is still unclear. In this study, we have demonstrated (I) the oxidative DNA damage delayed the gap filling of NER and inhibition of gap filling was also found with typical BER-inducing agents such as hydrogen peroxide, menadione,and methyl methanesulfonate (MMS). We propose that competitionmay occur between NER and BER, which results in delay of gap filling. (II) We also propose that the flavonoids of propolis serve as temporary carriers of electrons received from transition metal ions that are relayed to oxygen molecules to subsequently generate superoxide and H2O2 which can induce oxidative DNA damage. (III) Over expression PCNA can attune the inhibition of gap, this result shows PCNA plays an important role not only in NER but in base excision repair (BER). However, ligase I and Fen-1 did not produce similar effects.
Araki, M., Masutani, C., and Hanaoka, F. (1999). Molecular mechanism of nucleotide excision repair in mammalian cells. Protein, Nucleic Acid and Enzyme 44, 1845-1851.
Banskota, A.H., Tezuka, Y., and Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytother Res 15, 561-571.
Burdock, G.A. (1998). Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36, 347-363.
Caldecott, K.W. (2003). XRCC1 and DNA strand break repair. DNA Repair (Amst) 2, 955-969.
Chang, Y.C., Jan, K.Y., Cheng, C.A., Liao, C.B., and Liu, Y.C. (2008). Direct involvement of the tumor suppressor p53 in nucleotide excision repair. DNA Repair (Amst) 7, 751-761.
Chen, M.K., Tsai, Y.C., Li, P.Y., Liou, C.C., Taniga, E.S., Chang, D.W., Mori, T., and Liu, Y.C. (2011). Delay of Gap Filling during Nucleotide Excision Repair by Base Excision Repair: The Concept of Competition Exemplified by the Effect of Propolis. Toxicological Sciences 122, 339-348.
Collins, A.R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26, 249-261.
Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17, 1195-1214.
Havsteen, B.H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96, 67-202.
Krishna, T.S.R., Fenyo, D., Kong, X.P., Gary, S., Chait, B.T., Burgers, P., and Kuriyan, J. (1994). Crystallization of Proliferating Cell Nuclear Antigen (Pcna) from Saccharomyces-Cerevisiae. Journal of Molecular Biology 241, 265-268.
Lee, H.G., Li, M.H., Joung, E.J., Na, H.K., Cha, Y.N., and Surh, Y.J. Nrf2-Mediated heme oxygenase-1 upregulation as adaptive survival response to glucose deprivation-induced apoptosis in HepG2 cells. Antioxid Redox Signal 13, 1639-1648.
Li, H., Chang, T.W., Tsai, Y.C., Chu, S.F., Wu, Y.Y., Tzang, B.S., Liao, C.B., and Liu, Y.C. (2005). Colcemid inhibits the rejoining of the nucleotide excision repair of UVC-induced DNA damages in Chinese hamster ovary cells. Mutat Res 588, 118-128.
Li, P.Y., Chang, Y.C., Tzang, B.S., Chen, C.C., and Liu, Y.C. (2007). Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutat Res 629, 133-139.
Li, X.Y., Li, J., Harrington, J., Lieber, M.R., and Burgers, P.M.J. (1995). Lagging-Strand DNA-Synthesis at the Eukaryotic Replication Fork Involves Binding and Stimulation of Fen-1 by Proliferating Cell Nuclear Antigen. Journal of Biological Chemistry 270, 22109-22112.
Liu, Y., Prasad, R., Beard, W.A., Kedar, P.S., Hou, E.W., Shock, D.D., and Wilson, S.H. (2007). Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. J Biol Chem 282, 13532-13541.
Lynn, S., Lai, H.T., Gurr, J.R., and Jan, K.Y. (1997). Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12, 353-358.
Mossi, R., and Hubscher, U. (1998). Clamping down on clamps and clamp loaders--the eukaryotic replication factor C. Eur J Biochem 254, 209-216.
Na, H.-K., and Surh, Y.-J. (2003). Peroxisome proliferator-activated receptor gamma (PPAR gamma) ligands as bifunctional regulators of cell proliferation. Biochemical Pharmacology 66, 1381-1391.
Park, S.H., Jang, J.H., Li, M.H., Na, H.K., Cha, Y.N., and Surh, Y.J. (2007). Nrf2-mediated heme oxygenase-1 induction confers adaptive survival response to tetrahydropapaveroline-induced oxidative PC12 cell death. Antioxid Redox Signal 9, 2075-2086.
Shivji, M.K., Podust, V.N., Hubscher, U., and Wood, R.D. (1995). Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34, 5011-5017.
Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175, 184-191.
Vauzour, D., Buonfiglio, M., Corona, G., Chirafisi, J., Vafeiadou, K., Angeloni, C., Hrelia, S., Hrelia, P., and Spencer, J.P. Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol Nutr Food Res 54, 532-542.
Yin, H., and Porter, N.A. (2003). Specificity of the ferrous oxidation of xylenol orange assay: analysis of autoxidation products of cholesteryl arachidonate. Analytical Biochemistry 313, 319-326.