簡易檢索 / 詳目顯示

研究生: 許哲銘
Hsu, Che-Ming
論文名稱: A CMOS 32 × 32 Microelectrode Array with Electrical Stimulation for Cell Growth
促進細胞生長之CMOS 32 × 32電刺激微電極陣列晶片
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 微機電類比電路電刺激PC12陣列神經線ITOERK1/2
外文關鍵詞: MEMS, analog circuit, electrical stimulation, PC12, array, neurite, ITO, ERK1/2
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本晶片旨在以陣列式金電極構成可區域性給予電刺激的生物實驗平台,成功展示以具有高輸出電流的Class AB buffer做為對於金電極/培養液之間的阻抗之驅動。透過適當的封裝,實現培養液中之量測並且培養細胞於晶片上,並由量測之結果證明電訊號可順利至PC12細胞上。而在電刺激PC12細胞的實驗方面,使用透明之玻璃基板輔以ITO電極做為測試晶片以驗證電刺激的效果。可發現以100 ng/ml之神經生長因子處理之PC12,在受到強度100 mV,頻率100 Hz的雙相(biphasic)訊號刺激時,其神經線的延伸有明顯的增加。由其在剛開始分化神經線上約有10%的差異。另一方面,我們亦透過西方墨點法驗證,受到電刺激的PC12在此信號通道中之ERK磷酸化的情形為無電刺激的1.4倍,此結果指出電會刺激NGF所誘導的ERK磷酸化情形上升,暗示電刺激可能加強神經線之生長。


    The chip is designed to realize a platform which is an array of gold electrodes that could provide local electrical stimulation of biological cells for enhancing growth. A Class AB buffer with a high output current is utilized as a driver of the interfacial impedance between gold electrodes and medium. In order to achieve the measurement in medium and cells culture on the CMOS MEMS chip, we also designed a special package method. Rectangular pulse wave potentials were applied to the electrode at amplitudes of 50mV and 100 mV with a frequency of 100Hz. PC12 cells cultured on an indium-tin oxide (ITO) electrode has been shown to grow longer neurites with an enhanced initial growth rate in the existence of nerve growth factor (NGF) and electrical stimulation, especially at the amplitudes of 100 mV. And the result of Western Blot also implied that electrical stimulation will affect the neurite growth of PC12, because the phosphorylation of ERK1/2 after NGF treatment increased under the treatment of electrical stimulation.

    第1章 緒論 1 1-1 研究動機 1 1-2 微機電機技術簡介 3 1-2-1 歷史回顧 3 1-2-2 面型微加工技術 4 1-2-3 互補式金氧半導體微機電系統(CMOS-MEMS) 5 1-3 文獻回顧 8 第2章 電刺激裝置之架構與設置 15 2-1 實驗架構之比較與設計 15 2-1-1 電刺激實驗之比較 15 2-1-2 測試晶片之電極設計 17 2-1-3 測試晶片之封裝 19 2-1-4 測試晶片之刺激方法與刺激電路 21 2-2 電極阻抗之分析 25 2-2-1 電極/溶液之等效介面阻抗 25 2-2-2 電極/溶液之介面阻抗量測 26 2-3 電路架構之設計與模擬 29 2-3-1 刺激訊號輸出電路 29 2-3-2 數位控制訊號電路 33 2-3-3 電路驗證與模擬 38 第3章 生物實驗之材料與方法 42 3-1 生物實驗之簡介與機制 42 3-1-1 神經細胞 42 3-1-2 PC12之簡介 44 3-1-3 電刺激改變神經細胞生長之機制 45 3-2 生物實驗之方法與材料 46 3-2-1 PC12細胞培養 47 3-2-2 細胞均質液之製備 47 3-2-3 蛋白質濃度的測定 48 3-2-4 西方墨點分析法 48 第4章 晶片量測與結果 49 4-1 晶片後製程與封裝 49 4-1-1 晶片架構 49 4-1-2 晶片之後製程 50 4-1-3 晶片封裝 54 4-2 刺激電路之量測 57 4-3 PC12電刺激實驗 62 4-3-1 量測方法 62 4-3-2 測試晶片之量測結果 63 4-3-3 CMOS晶片之量測結果 70 第5章 結論 72 5-1-1 結果與討論 72 5-1-2 未來規畫 73 參考文獻 74

    [1] M. M. Poo, et al., "Lateral electrophoresis and diffusion of concanavalin a receptors in membrane of embryonic muscle-cell," Journal of Cell Biology, vol. 76, pp. 483-501, 1978.
    [2] J. M. Bustillo, et al., "Surface micromachining for microelectromec- hanical systems," Proceedings of the IEEE, vol. 86, pp. 1552-1574, Aug 1998.
    [3] J. H. Smith, et al., Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. New York: IEEE, 1995.
    [4] W. Franks, et al., "Patterned cell adhesion by self-assembled structures for use with a CMOS cell-based biosensor," Biosensors & Bioelectronics, vol. 22, pp. 1426-1433, Feb 2007.
    [5] C. Y. Fan, et al., "Electrically programmable surfaces for configurable patterning of cells," Advanced Materials, vol. 20, pp. 1418-+, Apr 2008.
    [6] F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," Journal of Physics-Condensed Matter, vol. 17, pp. R705-R774, Jul 2005.
    [7] L. F. Jaffe and M. M. Poo, "Neurites grow faster towards the cathode than the anode in a steady-field," Journal of Experimental Zoology, vol. 209, pp. 115-127, 1979.
    [8] N. B. Patel and M. M. Poo, "Perturbation of the direction of neurite growth by pulsed and focal electric-fields," Journal of Neuroscience, vol. 4, pp. 2939-2947, 1984.
    [9] R. J. Cork, et al., "The growth of PC12 neurites is biased towards the anode of an applied electrical-field," Journal of Neurobiology, vol. 25, pp. 1509-1516, Dec 1994.

    [10] C. E. Schmidt, et al., "Stimulation of neurite outgrowth using an electrically conducting polymer," Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 8948-8953, Aug 1997.
    [11] J. S. Park, et al., "Electrical Pulsed Stimulation of Surfaces Homogeneously Coated with Gold Nanoparticles to Induce Neurite Outgrowth of PC12 Cells," Langmuir, vol. 25, pp. 451-457, Jan 2009.
    [12] K. Kimura, et al., "Electrically induced neurite outgrowth of PC12 cells on the electrode surface," Medical & Biological Engineering & Computing, vol. 36, pp. 493-498, Jul 1998.
    [13] K. Kimura, et al., "Gene expression in the electrically stimulated differentiation of PC12 cells," Journal of Biotechnology, vol. 63, pp. 55-65, Jul 1998.
    [14] Y. Berdichevsky, et al., "UV/ozone modification of poly(dimethylsiloxane) microfluidic channels," Sensors and Actuators B-Chemical, vol. 97, pp. 402-408, Feb 1 2004.
    [15] http://www.gamry.com/App_Notes/Potentiostat_Primer.htm, Gamry Instr- ouments © 1997-2009.
    [16] A. S. Sedra and K. C. Smith, Microelectronic circuits, 5th ed. New York: Oxford University Press, 2004.
    [17] M. Sietzen, et al., "Rat adrenal-medulla - levels of chromogranins, enkephalins, dopamine beta-hydroxyl- ase and of the amine transporter are changed by nervous activity and hypophysectomy," Neuroscience, vol. 22, pp. 131-139, Jul 1987.
    [18] G. L. Ming, et al., "Electrical activity modulates growth cone guidance by diffusible factors," Neuron, vol. 29, pp. 441-452, Feb 2001.
    [19] G. M. Dittami and R. D. Rabbitt, "Electrically evoking and electrochemically resolving quantal release on a microchip," Lab on a Chip, vol. 10, pp. 30-35, 2010.
    [20] P. R. Gray, Analysis and design of analog integrated circuits, 4th ed. New York: Wiley, 2001.
    [21] E. T. McAdams, et al., "The linear and nonlinear electrical- properties of the electrode-electrolyte interface," Biosensors & Bioelectronics, vol. 10, pp. 67-74, 1995.
    [22] B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill, 2001.
    [23] P. M. Levine, et al., "Active CMOS sensor array for electrochemical biomolecular detection," IEEE Journal of Solid-State Circuits, vol. 43, pp. 1859-1871, Aug 2008.
    [24] D. A. Wagenaar, et al., "Effective parameters for stimulation of dissociated cultures using multi-electrode arrays," Journal of Neuroscience Methods, vol. 138, pp. 27-37, Sep 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE