研究生: |
吳柔禎 Wu, Rou-Jhen |
---|---|
論文名稱: |
Design and Synthesis of α-Ketoamides as Cathepsin S Inhibitors Against Tumor Invasion and Migration for Anticancer Therapies 設計及合成□-酮醯胺化合物作為組織蛋白酶S之抑制劑並評估其成為抗癌細胞侵襲及轉移藥物之潛力 |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
汪炳鈞
謝興邦 張文祥 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 243 |
中文關鍵詞: | 組織蛋白酶S 、α-酮醯胺抑制劑 、半胱胺酸蛋白酶 、抗癌藥物 |
外文關鍵詞: | cathepsin s, inhibitor, cysteine protease, alpha-ketoamide, anticancer, invasion, migration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織蛋白酶S為一種溶酶體半胱胺酸蛋白酶,主要由免疫系統表達,其在抗原呈現過程中參與降解第二型組織相容性複合體中恆定鏈的角色。研究發現,過度表達之組織蛋白酶S與一些自體免疫疾病有所關連,如:類風濕性關節炎、乾癬等。最近科學家亦發現,組織蛋白酶S會在惡性腫瘤細胞中被過度表達,且在腫瘤細胞的侵襲及轉移上扮演著重要的角色,經由抑制劑阻斷組織蛋白酶S之生物活性以達到癌症治療之構想成為近年藥物開發的新方法。
我們以組織蛋白酶S的水解機制為基礎,設計並合成了16個α-酮醯胺結構之胜肽抑制劑,期望能專一性地抑制目標蛋白酶S進而阻斷癌細胞增長與侵襲的功能。實驗結果發現13個化合物之Ki值低於10 nM,其中有5個抑制活性甚至在pM濃度範圍。其中,我們挑選化合物27c進行動物實驗之研究,結果顯示此化合物不但能有效抑制癌細胞之成長,亦提升了老鼠實驗組之存活率。
另外,為能增加化合物之生物口服利用率及循環時間以達到更優良之藥物療效,我們合成了具四級胺結構之化合物65及1,2,3-三氮唑結構之類肽化合物86、89。上述三個化合物仍保有Ki在奈米濃度等級之抑制活性。未來將進一步進行藥物動力學實驗以探討其發展為抗癌藥物之潛力。
Cathepsin S, a lysosomal cysteine protease, is primarily secreted from immune system and plays a major role in antigen presentation through degradation of invariant chain that is associated with the major histocompatibility class II complex (MHC II). Thus, cathepsin S is related to autoimmune diseases such as rheumatoid arthritis and psoriasis. Recently, scientists also found that cathepsin S is highly expressed in malignant cancer cells and plays an important role in cancer cells invasion, migration, and metastasis. Interruption of its activity by inhibitors has been extensively evaluated as a new therapeutic approach for cancer treatment.
On the basis of cathepsin S proteolytic mechanism, 16 peptidic α-ketoamide inhibitors were designed and synthesized for specifically targeting cathepsin S and suppressing its functions in tumor progression. Results revealed that 13 compounds with Ki values lower than 10 nM and 5 of them even provide picomolar range inhibition activity. Among them, compound 27c was selected for further animal experiment and the results showed obvious inhibition of tumor cell progression and increase of the survival rate.
To further improve oral bioavailability and long circulation half-life of the synthesized compound in medicinal application, compound 65 with quaternary ammonium group and peptidomometics compounds 86 and 89 with 1,2,3-triazole group were successfully synthesized. All of these compounds remain nanomolar scale inhibition activity. We are studying their pharmacokinetics and exploring their potentials as anticancer drugs.
參考文獻
1.Ivan, S., Matrix metalloproteinases in tumor invasion and metastasis. Semin. Cancer Biol. 2000, 10, 415-433.
2.Mohamed, M. M.; Sloane, B. F., Cysteine cathepsins:multifunctional enzymes in cancer. Nat. Rev. Cancer 2006, 6, 764-775.
3. Gocheva, V.; Joyce, J. A., Cysteine Cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007, 6, 60-64.
4.Bell-McGuinn, K. M.; Garfall, A. L.; Bogyo, M.; Hanahan, D.; Joyce, J. A., Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 2007, 67, 7378-7385.
5.Palermo, C.; Joyce, J. A., Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol. Sci. 2008, 29, 22-28.
6.Ghosh, P.; Dahms, N. M.; Kornfeld, S., Mannose 6-phosphate receptors:new twists in the tale. Nat. Rev. Mol. Cell Bio. 2003, 4, 202-212.
7.Im, E.; Kazlauskas, A., The role of cathepsins in ocular physiology and pathology. Exp. Eye Res. 2007, 84, 383-388.
8.Griffiths, J. R., Are cancer cells acidic? Brit. J. Cancer 1991, 64, 425-427.
9.Turk, B.; Turk, D.; Turk, V., Lysosomal cysteine proteases:more than scavengers. BBA - Protein Struct. M. 2000, 1477, 98-111.
10.Small, D.; Burden, R.; Scott, C., The emerging relevance of the cysteine protease cathepsin S in disease. Clin. Rev. Bone Miner. Metab. 2011, 9, 122-132.
11.Yasuda, Y.; Kaleta, J.; Bromme, D., The role of cathepsins in osteoporosis and arthritis:rationale for the design of new therapeutics. Adv. Drug Deliver. Rev. 2005, 57, 973-993.
12.Katunuma, N., Structure-based development of specific inhibitors for individual cathepsins and their medical applications. P. Jpn. Acad. B-Phys. 2011, 87, 29-39.
13.Nakagawa, T. Y.; Brissette, W. H.; Lira, P. D.; Griffiths, R. J.; Petrushova, N.; Stock, J.; McNeish, J. D.; Eastman, S. E.; Howard, E. D.; Clarke, S. R. M.; Rosloniec, E. F.; Elliott, E. A.; Rudensky, A. Y., Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 1999, 10, 207-217.
14.Cresswell, P., Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 1994, 12, 259-293.
15.Costantino, C. M.; Ploegh, H. L.; Hafler, D. A., Cathepsin S regulates class II MHC processing in human CD4+ HLA-DR+ T cells. J. Immunol. 2009, 183, 945-952.
16.Costantino, C. M.; Hang, H. C.; Kent, S. C.; Hafler, D. A.; Ploegh, H. L., Lysosomal cysteine and aspartic proteases are heterogeneously expressed and act redundantly to initiate human invariant chain degradation. J. Immunol. 2008, 180, 2876-2885.
17.Yixuan, Y.; Kiat, L. S.; Yee, C. L.; Huiyin, L.; Yunhao, C.; Kuan, C. P.; Hassan, A.; Ting, W. T.; Manuel, S.-T.; Guan, Y. K.; Pin, L. Y., Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J. Proteome Res. 2010, 9, 4767-4778.
18.Nomura, T.; Katunuma, N., Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. J. Med. Invest. 2005, 52, 1-9.
19.Brömme, D.; Bonneau, P. R.; Lachance, P.; Wiederanders, B.; Kirschke, H.; Peters, C.; Thomas, D. Y.; Storer, A. C.; Vernet, T., Functional expression of human cathepsin S in saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J. Biol. Chem. 1993, 268, 4832-4838.
20.Folkman, J., What is the evidence that tumors are angiogenesis dependent. J. Natl. Cancer I. 1990, 82, 1.
21.Gondi, C. S.; Lakka, S. S.; Dinh, D. H.; Olivero, W. C.; Gujrati, M.; Rao, J. S., RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004, 23, 8486-8496.
22.Chang, W. S.; Wu, H. R.; Yeh, C. T.; Wu, C. W.; Chang, J. Y., Lysosomal cysteine proteinase cathepsin S as a potential target for anti-cancer therapy. J. Cancer Mol. 2007, 3, 5-14.
23.Shi, G. P.; Sukhova, G. K.; Kuzuya, M.; Ye, Q.; Du, J.; Zhang, Y.; Pan, J. H.; Lu, M. L.; Cheng, X. W.; Iguchi, A.; Perrey, S.; Lee, A. M. E.; Chapman, H. A.; Libby, P., Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ. Res. 2003, 92, 493-500.
24.Wang, B.; Sun, J.; Kitamoto, S.; Yang, M.; Grubb, A.; Chapman, H. A.; Kalluri, R.; Shi, G. P., Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J. Biol. Chem. 2006, 281, 6020-6029.
25.Mcgrath, M. E.; Palmer, J. T.; Bromme, D.; Somoza, J. R., Crystal structure of human cathepsin S. Protein Sci. 1998, 7, 1294-1302.
26.Menard, R.; Carriere, J.; Laflamme, P.; Plouffe, C.; Khouri, H. E.; Vernet, T.; Tessier, D. C.; Thomas, D. Y.; Storer, A. C., Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 1991, 30, 8924-8928.
27.Pauly, T. A.; Sulea, T.; Ammirati, M.; Sivaraman, J.; Danley, D. E.; Griffor, M. C.; Kamath, A. V.; Wang, I. K.; Laird, E. R.; Seddon, A. P.; Ménard, R.; Cygler, M.; Rath, V. L., Specificity determinants of human cathepsin S revealed by crystal structures of complexes, Biochemistry 2003, 42, 3203-3213.
28.Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin, C. L.; Morwick, T.; Emmanuel, M. J.; Zindell, R.; McNeil, D.; Bekkali, Y.; Hrapchak, M.; DeTuri, M.; Crane, K.; White, D.; Pav, S.; Wang, Y.; Hao, M. H.; Grygon, C. A.; Labadia, M. E.; Freeman, D. M.; Davidson, W.; Hopkins, J. L.; Brown, M. L.; Spero, D. M., Design and synthesis of dipeptide nitriles as reversible and potent cathepsin S inhibitors. J. Med. Chem. 2002, 45, 5471-5482.
29.Hernandez, A. A.; Roush, W. R., Recent advances in the synthesis, design and selection of cysteine protease inhibitors. Curr. Opin. Chem. Biol. 2002, 6, 459-465.
30.Lecaille, F.; Kaleta, J.; Brömme, D., Human and parasitic papain-like cysteine proteases:their role in physiology and pathology and recent developments in inhibitor design. Chem. Rev. 2002, 102, 4459-4488.
31.Powers, J. C.; Asgian, J. L.; Ekici, Ö. D.; James, K. E., Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 2002, 102, 4639-4750.
32.Irie, O.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; Hitomi, Y.; Konishi, K.; Kishida, M.; Toyao, A.; Masuya, K.; Gunji, H.; Sakaki, J.; Iwasaki, G.; Hirao, H.; Kanazawa, T.; Tanabe, K.; Kosaka, T.; Hart, T. W.; Hallett, A., 4-Amino-2-cyanopyrimidines:novel scaffold for nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4642-4646.
33.Irie, O.; Ehara, T.; Iwasaki, A.; Yokokawa, F.; Sakaki, J.; Hirao, H.; Kanazawa, T.; Teno, N.; Horiuchi, M.; Umemura, I.; Gunji, H.; Masuya, K.; Hitomi, Y.; Iwasaki, G.; Nonomura, K.; Tanabe, K.; Fukaya, H.; Kosaka, T.; Snell, C. R.; Hallett, A., Discovery of selective and nonpeptidic cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3959-3962.
34.Bekkali, Y.; Thomson, D. S.; Betageri, R.; Emmanuel, M. J.; Hao, M. H.; Hickey, E.; Liu, W.; Patel, U.; Ward, Y. D.; Young, E. R. R.; Nelson, R.; Kukulka, A.; Brown, M. L.; Crane, K.; White, D.; Freeman, D. M.; Labadia, M. E.; Wildeson, J.; Spero, D. M., Identification of a novel class of succinyl-nitrile-based Cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2465-2469.
35.Patterson, A. W.; Wood, W. J. L.; Hornsby, M.; Lesley, S.; Spraggon, G.; Ellman, J. A., Identification of selective, nonpeptidic nitrile inhibitors of cathepsin S using the substrate activity screening method. J. Med. Chem. 2006, 49, 6298-6307.
36.Cai, J.; Fradera, X.; Zeeland, M.V.; Dempster, M.; Cameron, K. S.; Bennett, D. J.; Robinson, J.; Popplestone, L.; Baugh, M.; Westwood, P.; Bruin, J.; Hamilton, W.; Kinghorn, E.; Long, C.; Uitdehaag, J. C. M., 4-(3-Trifluoromethylphenyl)-pyrimidine-2-carbonitrile as cathepsin S inhibitors:N3, not N1 is critically important. Bioorg. Med. Chem. Lett. 2010, 20, 4507-4510.
37.Cai, J.; Baugh, M.; Black, D.; Long, C.; Jonathan Bennett, D.; Dempster, M.; Fradera, X.; Gillespie, J.; Andrews, F.; Boucharens, S.; Bruin, J.; Cameron, K. S.; Cumming, I.; Hamilton, W.; Jones, P. S.; Kaptein, A.; Kinghorn, E.; Maidment, M.; Martin, I.; Mitchell, A.; Rankovic, Z.; Robinson, J.; Scullion, P.; Uitdehaag, J. C. M.; Vink, P.; Westwood, P.; van Zeeland, M.; van Berkom, L.; Bastiani, M.; Meulemans, T., 6-Phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitrile as cathepsin S inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 4350-4354.
38.Ayesa, S.; Lindquist, C.; Agback, T.; Benkestock, K.; Classon, B.; Henderson, I.; Hewitt, E.; Jansson, K.; Kallin, A.; Sheppard, D.; Samuelsson, B., Solid-phase parallel synthesis and SAR of 4-amidofuran-3-one inhibitors of cathepsin S:effect of sulfonamides P3 substituents on potency and selectivity. Bioorg. Med. Chem. Lett. 2009, 17, 1307-1324.
39.Stroup, G. B.; Lark, M. W.; Veber, D. F.; Bhattacharyya, A.; Blake, S.; Dare, L. C.; Erhard, K. F.; Hoffman, S. J.; James, I. E.; Marquis, R. W.; Ru, Y.; Vasko-Moser, J. A.; Smith, B. R.; Tomaszek, T.; Gowen, M., Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J. Bone Miner. Res. 2001, 16, 1739-1746.
40.Maryanoff, B. E.; Costanzo, M. J., Inhibitors of proteases and amide hydrolases that employ an □-ketoheterocycle as a key enabling functionality. Bioorg. Med. Chem. Lett. 2008, 16, 1562-1595.
41.Palmer, J. T.; Hirschbein, B. L.; Cheung, H.; Mccarter, J.; Janc, J. W.; Yu, Z. W.; Wesolowski, G., Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 2909-2914.
42.Tavares, F. X.; Deaton, D. N.; Miller, A. B.; Miller, L. R.; Wright, L. L., Ketoheterocycle-based inhibitors of cathepsin K:a novel entry into the synthesis of peptidic ketoheterocycles. Bioorg. Med. Chem. Lett. 2005, 15, 3891-3895.
43.Edwards, P. D.; Meyer, E. F.; Vijayalakshmi, J.; Tuthill, P. A.; Andisik, D. A.; Gomes, B.; Strimpler, A., Design, synthesis, and kinetic evaluation of a unique class of elastase inhibitors, the peptidyl alpha-ketobenzoxazoles, and the x-ray crystal structure of the covalent complex between porcine pancreatic elastase and Ac-Ala-Pro-Val-2-benzoxazole. J. Am. Chem. Soc. 1992, 114, 1854-1863.
44.Boschetti, C. E.; Mata, E. G.; Mascaretti, O. A.; Cricco, J. A.; Coux, G.; Roveri, O. A., Synthesis and porcine pancreatic elastase inhibitory evaluation of 6 alpha-(sulfonyl)oxy-and 6 alpha-chloropenicillanate sulfone esters and 3 alpha-(acyloxy)methyl-6 alpha-chloropenam sulfones. Bioorg. Med. Chem. Lett. 1995, 5, 2033-2036.
45.Berti, P. J.; Faerman, C. H.; Storer, A. C., Cooperativity of papain-substrate interaction energies in the S2 to S2' subsites. Biochemistry 1991, 30, 1394-1402.
46.Zhou, N. E.; Guo, D.; Thomas, G.; Reddy, A. V. N.; Kaleta, J.; Purisima, E.; Menard, R.; Micetich, R. G.; Singh, R., 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 139-141.
47.Saegusa, K.; Ishimaru, N.; Yanagi, K.; Arakaki, R.; Ogawa, K.; Saito, I.; Katunuma, N.; Hayashi, Y., Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J. Clin. Invest. 2002, 110, 361-369.
48.Thompson, R. C.; Bauer, C. A., Reaction of peptide aldehydes with serine proteases. Implications for the entropy changes associated with enzymic catalysis. Biochemistry 1979, 18, 1552-1558.
49.Kisselev, A. F.; Goldberg, A. L., Proteasome inhibitors:from research tools to drug candidates. Chem. Biol. 2001, 8, 739-758.
50.Smith, R. A.; Copp, L. J.; Donnelly, S. L.; Spencer, R. W.; Krantz, A., Inhibition of cathepsin B by peptidyl aldehydes and ketones:slow-binding behavior of a trifluoromethyl ketone. Biochemistry 1988, 27, 6568-6573.
51.Westerik, J. O. C.; Wolfenden, R., Aldehydes as inhibitors of papain. J. Biol. Chem. 1972, 247, 8195-8197.
52.Votta, B. J.; Levy, M. A.; Badger, A.; Bradbeer, J.; Dodds, R. A.; James, I. E.; Thompson, S.; Bossard, M. J.; Carr, T.; Connor, J. R.; Tomaszek, T. A.; Szewczuk, L.; Drake, F. H.; Veber, D. F.; Gowen, M., Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Miner. Res. 1997, 12, 1396-1406.
53.Katunuma, N.; Murata, E.; Kakegawa, H.; Matsui, A.; Tsuzuki, H.; Tsuge, H.; Turk, D.; Turk, V.; Fukushima, M.; Tada, Y.; Asao, T., Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett. 1999, 458, 6-10.
54.Li, Z.; Ortega-Vilain, A. C.; Patil, G. S.; Chu, D. L.; Foreman, J. E.; Eveleth, D. D.; Powers, J. C., Novel peptidyl alpha-keto amide inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1996, 39, 4089-4098.
55.Li, Z.; Patil, G. S.; Golubski, Z. E.; Hori, H.; Tehrani, K.; Foreman, J. E.; Eveleth, D. D.; Bartus, R. T.; Powers, J. C., Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1993, 36, 3472-3480.
56.Otto, H. H.; Schirmeister, T., Cysteine proteases and their inhibitors. Chem. Rev. 1997, 97, 133-172.
57.Harbeson, S. L.; Abelleira, S. M.; Akiyama, A.; Barrett, R.; Carroll, R. M.; Straub, J. A.; Tkacz, J. N.; Wu, C.; Musso, G. F., Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J. Med. Chem. 1994, 37, 2918-2929.
58.Tavares, F. X.; Boncek, V.; Deaton, D. N.; Hassell, A. M.; Long, S. T.; Miller, A. B.; Payne, A. A.; Miller, L. R.; Shewchuk, L. M.; Wells-Knecht, K.; Willard, D. H.; Wright, L. L.; Zhou, H. Q., Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin K. J. Med. Chem. 2003, 47, 588-599.
59.Bartus, R. T.; Baker, K. L.; Heiser, A. D.; Sawyer, S. D.; Dean, R. L.; Elliott, P. J.; Straub, J. A., Postischemic administration of AK275, a calpain Inhibitor, provides substantial protection against focal ischemic brain damage. J. Cereb. Blood Flow Metab. 1994, 14, 537-544.
60.Bogen, S.; Saksena, A. K.; Arasappan, A.; Gu, H.; Njoroge, F. G.; Girijavallabhan, V.; Pichardo, J.; Butkiewicz, N.; Prongay, A.; Madison, V., Hepatitis C virus NS3-4A serine protease inhibitors: use of a P2–P1 cyclopropyl alanine combination for improved potency. Bioorg. Med. Chem. Lett. 2005, 15, 4515-4519.
61.Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.; Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C. K., Peptoids:a modular approach to drug discovery. P. Natl. Acad. Sci.USA 1992, 89, 9367-9371.
62.Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H., Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 1992, 114, 10646-10647.
63.Zuckermann, R. N.; Martin, E. J.; Spellmeyer, D. C.; Stauber, G. B.; Shoemaker, K. R.; Kerr, J. M.; Figliozzi, G. M.; Goff, D. A.; Siani, M. A., Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J. Med. Chem. 1994, 37, 2678-2685.
64.Lim, H. S.; Muralidhar, R. M.; Xiao, X.; Wilson, J.; Wilson, R.; Connell, S.; Kodadek, T., Rapid identification of improved protein ligands using peptoid microarrays. Bioorg. Med. Chem. Lett. 2009, 19, 3866-3869.
65.De León-Rodríguez, L. M.; Lubag, A.; Udugamasooriya, D. G.; Proneth, B.; Brekken, R. A.; Sun, X.; Kodadek, T.; Dean Sherry, A., MRI detection of VEGFR2 in vivo using a low molecular weight peptoid−(Gd)8-dendron for targeting. J. Am. Chem. Soc. 2010, 132, 12829-12831.
66.Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H., □-Peptides:synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a beta-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 1996, 79, 913-941.
67.Ye, T.; Mckervey, M. A., Organic synthesis with□-diazocarbonyl compounds. Chem. Rev. 1994, 94, 1091-1160.
68.Murray, J. K.; Farooqi, B.; Sadowsky, J. D.; Scalf, M.; Freund, W. A.; Smith, L. M.; Chen, J.; Gellman, S. H., Efficient synthesis of a beta-peptide combinatorial library with microwave irradiation. J. Am. Chem. Soc. 2005, 127, 13271-13280.
69.Basler, B.; Schuster, O.; Bach, T., Conformationally constrained beta-amino acid derivatives by intramolecular [2+2]-photocycloaddition of a tetronic acid amide and subsequent lactone ring opening. J. Org. Chem. 2005, 70, 9798-9808.
70.Beke, T.; Somlai, C.; Perczel, A., Toward a rational design of beta-peptide structures. J. Comput. Chem. 2006, 27, 20-38.
71.Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H. A.; Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H., Improving oral bioavailability of peptides by multiple N-methylation:somatostatin analogues. Angew. Chem. Intern. Ed. 2008, 47, 2595-2599.
72.Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H., N-Methylation of peptides:a new perspective in medicinal chemistry. Accounts Chem. Res. 2008, 41, 1331-1342.
73.Di Gioia, M. L.; Leggio, A.; Le Pera, A.; Liguori, A.; Napoli, A.; Siciliano, C.; Sindona, G., “One-pot” methylation of N-nosyl -alpha-amino acid methyl esters with diazomethane and their coupling to prepare N-methyl dipeptides. J. Org. Chem. 2003, 68, 7416-7421.
74.Aurelio, L.; Box, J. S.; Brownlee, R. T. C.; Hughes, A. B.; Sleebs, M. M., An efficient synthesis of N-methyl amino acids by way of intermediate 5-oxazolidinones. J. Org. Chem. 2003, 68, 2652-2667.
75.Biron, E.; Kessler, H., Convenient synthesis of N-methylamino acids compatible with Fmoc solid-phase peptide synthesis. J. Org. Chem. 2005, 70, 5183-5189.
76.Biron, E.; Chatterjee, J.; Kessler, H., Optimized selective N-methylation of peptides on solid support. Journal of Peptide Science 2006, 12, 213-219.
77.Miller, S. C.; Scanlan, T. S., Site-selective N-methylation of peptides on solid support. J. Am. Chem. Soc. 1997, 119, 2301-2302.
78.Tal-Gan, Y.; Freeman, N. S.; Klein, S.; Levitzki, A.; Gilon, C., Synthesis and structure–activity relationship studies of peptidomimetic PKB/Akt inhibitors:the significance of backbone interactions. Bioorg. Med. Chem. Lett. 2010, 18, 2976-2985.
79.Patani, G. A.; LaVoie, E. J., Bioisosterism:a rational approach in drug design. Chem. Rev. 1996, 96, 3147-3176.
80.Mucha, A.; Kafarski, P.; Berlicki, Ł., Remarkable potential of the □-aminophosphonate / phosphinate structural motif in medicinal chemistry. J. Med. Chem. 2011, 54, 5955-5980.
81.Freeman, N. S.; Tal-Gan, Y.; Klein, S.; Levitzki, A.; Gilon, C., Microwave-assisted solid-phase aza-peptide synthesis:aza scan of a PKB/Akt inhibitor using aza-arginine and aza-proline precursors. The J. Org. Chem. 2011, 76, 3078-3085.
82.Bach, A.; Eildal, J. N. N.; Stuhr-Hansen, N.; Deeskamp, R.; Gottschalk, M.; Pedersen, S. W.; Kristensen, A. S.; Strømgaard, K., Cell-permeable and plasma-stable peptidomimetic inhibitors of the postsynaptic density-95 / N-methyl-d-aspartate receptor interaction. J. Med. Chem. 2011, 54, 1333-1346.
83.Wang, H.; Byun, Y.; Barinka, C.; Pullambhatla, M.; Bhang, H. E. C.; Fox, J. J.; Lubkowski, J.; Mease, R. C.; Pomper, M. G., Bioisosterism of urea-based GCPII inhibitors:synthesis and structure–activity relationship studies. Bioorg. Med. Chem. Lett. 2010, 20, 392-397.
84.Hernández, D. c.; Lindsay, K. B.; Nielsen, L.; Mittag, T.; Bjerglund, K.; Friis, S.; Mose, R.; Skrydstrup, T., Further studies toward the stereocontrolled synthesis of silicon-containing peptide mimics. J. Org. Chem. 2010, 75, 3283-3293.
85.Hartwig, S.; Schwarz, J.; Hecht, S., From peptides to their alternating ester-urea analogues:synthesis and influence of hydrogen bonding motif and stereochemistry on aggregation. J. Org. Chem. 2009, 75, 772-782.
86.Andersen, K. E.; Lundt, B. F.; Jørgensen, A. S.; Braestrup, C., Oxadiazoles as bioisosteric transformations of carboxylic functionalities. II. Eur. J. Med. Chem.1996, 31, 417-425.
87.Ersmark, K.; Nervall, M.; Hamelink, E.; Janka, L. K.; Clemente, J. C.; Dunn, B. M.; Blackman, M. J.; Samuelsson, B.; Åqvist, J.; Hallberg, A., Synthesis of malarial plasmepsin inhibitors and prediction of binding modes by molecular dynamics simulations. J. Med. Chem. 2005, 48, 6090-6106.
88.Chrysina, E. D.; Bokor, É.; Alexacou, K. M.; Charavgi, M. D.; Oikonomakos, G. N.; Zographos, S. E.; Leonidas, D. D.; Oikonomakos, N. G.; Somsák, L., Amide-1,2,3-triazole bioisosterism: the glycogen phosphorylase case. Tetrahedron-Asymmetry 2009, 20, 733-740.
89.Hitotsuyanagi, Y.; Motegi, S.; Fukaya, H.; Takeya, K., A cis amide bond surrogate incorporating 1,2,4-triazole. J. Org. Chem. 2002, 67, 3266-3271.
90.Ruan, F.; Chen, Y.; Itoh, K.; Sasaki, T.; Hopkins, P. B., Synthesis of peptides containing unnatural, metal-ligating residues:aminodiacetic acid as a peptide side chain. J. Org. Chem. 1991, 56, 4347-4354.
91.Pompei, M.; Francesco, M. E. D.; Pesci, S.; Koch, U.; Vignetti, S. E.; Veneziano, M.; Pace, P.; Summa, V., Novel P2–P4 macrocyclic inhibitors of HCV NS3/4A protease by P3 succinamide fragment depeptidization strategy. Bioorg. Md. Chem. Lett. 2010, 20, 168-174.
92.Barrett, A. G. M.; Hennessy, A. J.; Vézouët, R. L.; Procopiou, P. A.; Seale, P. W.; Stefaniak, S.; Upton, R. J.; White, A. J. P.; Williams, D. J., Synthesis of diverse macrocyclic peptidomimetics utilizing ring-closing metathesis and solid-phase synthesis. J. Org. Chem. 2004, 69, 1028-1037.
93.Velázquez, F.; Venkatraman, S.; Blackman, M.; Pinto, P.; Bogen, S. p.; Sannigrahi, M.; Chen, K.; Pichardo, J.; Hart, A.; Tong, X.; Girijavallabhan, V.; Njoroge, F. G., Design, synthesis, and evaluation of oxygen-containing macrocyclic peptidomimetics as inhibitors of HCV NS3 protease. J. Med. Chem. 2009, 52, 700-708.
94.Hu, X.; Nguyen, K. T.; Verlinde, C. L. M. J.; Hol, W. G. J.; Pei, D., Structure-based design of a macrocyclic inhibitor for peptide deformylase. J. Med. Chem. 2003, 46, 3771-3774.
95.Venkatraman, S.; Velazquez, F.; Wu, W.; Blackman, M.; Chen, K. X.; Bogen, S.; Nair, L.; Tong, X.; Chase, R.; Hart, A.; Agrawal, S.; Pichardo, J.; Prongay, A.; Cheng, K. C.; Girijavallabhan, V.; Piwinski, J.; Shih, N. Y.; Njoroge, F. G., Discovery and structure-activity relationship of P1-P3 ketoamide derived macrocyclic inhibitors of hepatitis C virus NS3 protease. J. Med. Chem. 2008, 52, 336-346.
96.Stachel, S. J.; Coburn, C. A.; Sankaranarayanan, S.; Price, E. A.; Pietrak, B. L.; Huang, Q.; Lineberger, J.; Espeseth, A. S.; Jin, L.; Ellis, J.; Holloway, M. K.; Munshi, S.; Allison, T.; Hazuda, D.; Simon, A. J.; Graham, S. L.; Vacca, J. P., Macrocyclic inhibitors of beta-secretase:functional activity in an animal model. J. Med. Chem. 2006, 49, 6147-6150.
97.Scarborough, R. M.; Gretler, D. D., Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers:novel parenteral and potential oral antithrombotic agents. Journal of Medicinal Chemistry 2000, 43, 3453-3473.
98.Tal-Gan, Y.; Hurevich, M.; Klein, S.; Ben-Shimon, A.; Rosenthal, D.; Hazan, C.; Shalev, D. E.; Niv, M. Y.; Levitzki, A.; Gilon, C., Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt). J. Med. Chem. 2011, 54, 5154-5164.
99.Orner, B. P.; Ernst, J. T.; Hamilton, A. D., Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an □-helix. J. Am. Chem. Soc. 2001, 123, 5382-5383.
100. Kutzki, O.; Park, H. S.; Ernst, J. T.; Orner, B. P.; Yin, H.; Hamilton, A. D., Development of a potent Bcl-xL antagonist based on □-helix mimicry. J. Am. Chem. Soc. 2002, 124, 11838-11839.
101. Yin, H.; Lee, G. i.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Orner, B. P.; Ernst, J. T.; Wang, H. G.; Sebti, S. M.; Hamilton, A. D., Terphenyl-based bak BH3 alpha-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. J. Am. Chem. Soc. 2005, 127, 10191-10196.
102. Yin, H.; Lee, G. i.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.; Hamilton, A. D., Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. Intern. Ed. 2005, 44, 2704-2707.
103. Horwell, D. C.; Howson, W.; Ratcliffe, G. S.; Willems, H. M. G., The design of dipeptide helical mimetics:the synthesis, tachykinin receptor affinity and conformational analysis of 1,1,6-trisubstituted indanes. Bioorg. Med. Chem. Lett. 1996, 4, 33-42.
104. Lu, F.; Chi, S. W.; Kim, D. H.; Han, K. H.; Kuntz, I. D.; Guy, R. K., Proteomimetic libraries:design, synthesis, and evaluation of p53−MDM2 interaction inhibitors. J. Comb. Chem. 2006, 8, 315-325.
105. Ahn, J. M.; Han, S. Y., Facile synthesis of benzamides to mimic an □-helix. Tetrahedron Lett. 2007, 48, 3543-3547.
106. Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M., Design and synthesis of a trans-fused polycyclic ether skeleton as an alpha-helix mimetic scaffold. Tetrahedron Lett. 2005, 46, 2179-2183.
107. Becerril, J.; Hamilton, A. D., Helix mimetics as inhibitors of the interaction of the estrogen receptor with coactivator peptides. Angew. Chem. Intern. Ed. 2007, 46, 4471-4473.
108. Lee, J. H.; Zhang, Q.; Jo, S.; Chai, S. C.; Oh, M.; Im, W.; Lu, H.; Lim, H. S., Novel pyrrolopyrimidine-based alpha-helix mimetics: cell-permeable inhibitors of protein-protein interactions. J. Am. Chem. Soc. 2010, 133, 676-679.
109. Cummings, C. G.; Hamilton, A. D., Disrupting protein-protein interactions with non-peptidic, small molecule □-helix mimetics. Curr. Opin. Chem. Biol. 2010, 14, 341-346.
110. Thurmond, R. L.; Sun, S.; Sehon, C. A.; Baker, S. M.; Cai, H.; Gu, Y.; Jiang, W.; Riley, J. P.; Williams, K. N.; Edwards, J. P.; Karlsson, L., Identification of a potent and selective noncovalent cathepsin S inhibitor. J. Pharmacol. Exp. Ther. 2004, 308, 268-276.
111. Ameriks, M. K.; Axe, F. U.; Bembenek, S. D.; Edwards, J. P.; Gu, Y.; Karlsson, L.; Randal, M.; Sun, S.; Thurmond, R. L.; Zhu, J., Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements. Bioorg. Med. Chem. Lett. 2009, 19, 6131-6134.
112. Wei, J.; Pio, B. A.; Cai, H.; Meduna, S. P.; Sun, S.; Gu, Y.; Jiang, W.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P., Pyrazole-based cathepsin S inhibitors with improved cellular potency. Bioorg. Med. Chem. Lett. 2007, 17, 5525-5528.
113. Wiener, J. J. M.; Wickboldt Jr, A. T.; Wiener, D. K.; Lee-Dutra, A.; Edwards, J. P.; Karlsson, L.; Nguyen, S.; Sun, S.; Jones, T. K.; Grice, C. A., Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors. Part 2:modification of P3, P4, and P5 regions. Bioorg. Med. Chem. Lett. 2010, 20, 2375-2378.
114. Irie, O.; Kosaka, T.; Kishida, M.; Sakaki, J.; Masuya, K.; Konishi, K.; Yokokawa, F.; Ehara, T.; Iwasaki, A.; Iwaki, Y.; Hitomi, Y.; Toyao, A.; Gunji, H.; Teno, N.; Iwasaki, G.; Hirao, H.; Kanazawa, T.; Tanabe, K.; Hiestand, P. C.; Malcangio, M.; Fox, A. J.; Bevan, S. J.; Yaqoob, M.; Culshaw, A. J.; Hart, T. W.; Hallett, A., Overcoming hERG issues for brain-penetrating cathepsin S inhibitors:2-cyanopyrimidines. Part 2. Bioorg. Med. Chem. Lett. 2008, 18, 5280-5284.
115. Irie, O.; Kosaka, T.; Ehara, T.; Yokokawa, F.; Kanazawa, T.; Hirao, H.; Iwasaki, A.; Sakaki, J.; Teno, N.; Hitomi, Y.; Iwasaki, G.; Fukaya, H.; Nonomura, K.; Tanabe, K.; Koizumi, S.; Uchiyama, N.; Bevan, S. J.; Malcangio, M.; Gentry, C.; Fox, A. J.; Yaqoob, M.; Culshaw, A. J.; Hallett, A., Discovery of orally bioavailable Cathepsin S inhibitors for the reversal of neuropathic pain. J. Med. Chem. 2008, 51, 5502-5505.
116. Wood, W. J. L.; Patterson, A. W.; Tsuruoka, H.; Jain, R. K.; Ellman, J. A., Substrate activity screening:a fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J. Am. Chem. Soc. 2005, 127, 15521-15527.
117. Han, W.; Hu, Z.; Jiang, X.; Decicco, C. P., □-Ketoamides, alpha-ketoesters and alpha-diketones as HCV NS3 protease inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 711-713.
118. Adang, A. E. P.; de Man, A. P. A.; Vogel, G. M. T.; Grootenhuis, P. D. J.; Smit, M. J.; Peters, C. A. M.; Visser, A.; Rewinkel, J. B. M.; van Dinther, T.; Lucas, H.; Kelder, J.; van Aelst, S.; Meuleman, D. G.; van Boeckel, C. A. A., Unique overlap in the prerequisites for thrombin inhibition and oral bioavailability resulting in potent oral antithrombotics. J. Med. Chem. 2002, 45, 4419-4432.
119. Catalano, J. G.; Deaton, D. N.; Long, S. T.; McFadyen, R. B.; Miller, L. R.; Payne, J. A.; Wells-Knecht, K. J.; Wright, L. L., Design of small molecule ketoamide-based inhibitors of cathepsin K. Bioorg. Med. Chem. Lett. 2004, 14, 719-722.
120. Barrett, D. G.; Catalano, J. G.; Deaton, D. N.; Long, S. T.; McFadyen, R. B.; Miller, A. B.; Miller, L. R.; Wells-Knecht, K. J.; Wright, L. L., A structural screening approach to ketoamide-based inhibitors of cathepsin K. Bioorg. Med. Chem. Lett. 2005, 15, 2209-2213.
121. Semple, J. E.; Levy, O. E.; Minami, N. K.; Owens, T. D.; Siev, D. V., Novel, potent and selective chimeric FXa inhibitors featuring hydrophobic p1-ketoamide moieties. Bioorg. Med. Chem. Lett. 2000, 10, 2305-2309.
122. Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E., New synthetic technology for efficient construction of □-hydroxy-□ -amino amides via the passerini reaction1. Organic Lett. 2000, 2, 2769-2772.
123. Bihovsky, R.; Tao, M.; Mallamo, J. P.; Wells, G. J., 1,2-Benzothiazine 1,1-dioxide alpha-ketoamide analogues as potent calpain I inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 1035-1038.
124. Chen, J. C.; Uang, B. J.; Lyu, P. C.; Chang, J. Y.; Liu, K. J.; Kuo, C. C.; Hsieh, H. P.; Wang, H. C.; Cheng, C. S.; Chang, Y. H.; Chang, M. D. T.; Chang, W. S. W.; Lin, C. C., Design and synthesis of alpha-ketoamides as cathepsin S inhibitors with potential applications against tumor invasion and angiogenesis. J. Med. Chem. 2010, 53, 4545-4549.
125. 陳若君,國立清華大學化學研究所 博士論文,2009.
126. Nayak, M.; Batra, S., Isonitriles from the Baylis–Hillman adducts of acrylates:viable precursor to tetrazolo-fused diazepinones via post-Ugi cyclization. Tetrahedron Lett. 2010, 51, 510-516.
127. Murelli, R. P.; Zhang, A. X.; Michel, J.; Jorgensen, W. L.; Spiegel, D. A., Chemical control over immune recognition:a Class of antibody-recruiting small molecules that target prostate cancer. J. Am. Chem. Soc. 2009, 131, 17090-17092.
128. Parker, C. G.; Domaoal, R. A.; Anderson, K. S.; Spiegel, D. A., An antibody-recruiting small molecule that targets HIV gp120. J. Am. Chem. Soc. 2009, 131, 16392-16394.
129. Zhang, A. X.; Murelli, R. P.; Barinka, C.; Michel, J.; Cocleaza, A.; Jorgensen, W. L.; Lubkowski, J.; Spiegel, D. A., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132, 12711-12716.
130. Sawada, D.; Kanai, M.; Shibasaki, M., Enantioselective total synthesis of epothilones A and B using multifunctional asymmetric catalysis. J. Am. Chem. Soc. 2000, 122, 10521-10532.
131. Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M., Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem.Mater. 2005, 17, 4617-4621.
132. Bragd, P. L.; Besemer, A. C.; Bekkum, H. V., TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates. J. Mol. Catal. A-Chem. 2001, 170, 35-42.
133. Kato, Y.; Matsuo, R.; Isogai, A., Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohyd. Polym. 2003, 51, 69-75.
134. Lei, M.; Hu, R. J.; Wang, Y. G., Mild and selective oxidation of alcohols to aldehydes and ketones using NaIO4/TEMPO/NaBr system under acidic conditions. Tetrahedron 2006, 62, 8928-8932.
135. Stanfield, C. F.; Parker, J. E.; Kanellis, P., Synthesis of protected amino alcohols:a comparative study. J. Org. Chem. 1981, 46, 4799-4800.
136. Stanfield, C. F.; Parker, J. E.; Kanellis, P., Preparation of protected amino aldehydes. J. Org. Chem. 1981, 46, 4797-4798.
137. Schuda, P. F.; Greenlee, W. J.; Chakravarty, P. K.; Eskola, P., A short and efficient synthesis of (3S,4S)-4-[(tert-Butyloxycarbonyl) -amino]-5-cyclohexyl-3-hydroxypentanoic acid ethyl ester. J. Org. Chem. 1988, 53, 873-875.
138. Evers, B.; Ruehter, G.; Berg, M.; Dodge, J. A.; Hankotius, D.; Hary, U.; Jungheim, L. N.; Mest, H. J.; Nava, E. M. M. D. L.; Mohr, M.; Muehl, B. S.; Petersen, S.; Sommer, B.; Riedel-Herold, G.; Tebbe, M. J.; Thrasher, K. J.; Voelkers, S., Structure activity studies of the serine-AIB dipeptide domain in 2,3-dihydroisothiazole based growth hormone secretagogues. Bioorg. Med. Chem. Lett. 2005, 13, 6748-6762.
139. Bollans, L.; Bacsa, J.; O’Farrell, D. A.; Waterson, S.; Stachulski, A. V., Syntheses of structurally diverse amino acids, including □-hydroxylysine, using the acyl nitroso Diels-Alder reaction. Tetrahedron Lett. 2010, 51, 2160-2163.
140. Pan, X.; Tan, N.; Zeng, G.; Han, H.; Huang, H., 3D-QSAR and docking studies of aldehyde inhibitors of human cathepsin K. Bioorg. Med. Chem. Lett. 2006, 14, 2771-2778.
141. Tan, C. Y. K.; Wainman, D.; Weaver, D. F., N-, □-, and □ -Substituted 3-aminopropionic acids:design, syntheses and antiseizure activities. Bioorg. Med. Chem. Lett. 2003, 11, 113-121.
142. Abele, S.; Guichard, G.; Seebach, D., (S)-beta3-Homolysine- and (S)-beta3-homoserine-containing beta-peptides:CD spectra in aqueous solution. Helv. Chim. Acta 1998, 81, 2141-2156.
143. Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J. L.; Yi, N., A synthesis of protected aminoalkyl epoxides from .alpha.-amino acids. J. Org. Chem. 1987, 52, 1487-1492.
144. Moore, C. L.; Leatherwood, D. D.; Diehl, T. S.; Selkoe, D. J.; Wolfe, M. S., Difluoro ketone peptidomimetics suggest a large S1 pocket for Alzheimer's □-secretase:implications for inhibitor design. J. Med. Chem. 2000, 43, 3434-3442.