研究生: |
沈文銘 Wen-Ming Shen |
---|---|
論文名稱: |
車輛裝置用小型摩擦式過載離合器之設計 Design of the small size friction type overload clutches for vehicle devices |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 離合器 、摩擦係數 、彈簧 、內屐式 、掣子式 、曲型拱 |
外文關鍵詞: | Clutches, Coefficient of friction, Spring, Internal shoe, Detent, Curve arch |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通運輸工具中,車輛所佔比重極高,尤其是供人乘坐汽車的設計,除了必需具備安全舒適的需求之外,也需兼顧到經濟性,自從1973年能源危機以來,油價飆漲各國政府莫不深思,從開源與節流兩方面去解決這個問題,某些替代性能源,雖可減緩一部分能源供應的困窘情形,迄目前為止還是以降低汽車油耗為最有效,而降低油耗的最佳辦法就是輕量化,欲達成輕量化的目標,可從改進材質和變更結構設計著手。組成汽車的零件甚多,其中被廣泛地應用作為扭矩過載的保護裝置,廣義地稱之為過載離合器,然而一般傳統的離合裝置,是由結構體、彈簧、摩擦塊等所組成,其結構複雜且體積龐大,欲達成輕、薄、短、小的目標誠屬不易,目前微小型化產品在日常生活中的應用已隨處可見,且已成必然之趨勢,針對微細元件的開發,必需有適合微小型化的製程的設計,因此簡化扭矩傳遞的離合器結構,減少零件數目,以利於微機電的加工製作。本研究提出四種不同結構,設計輕量小型的過載離合器,將零件數目減少以求減輕重量及加快生產速度,可應用於過負荷保護的場合,譬如汽車的電動窗、自動天線的控制,充分發揮簡易組裝的特色,達到保護的目的,更可進一步地發展微型化。探討各項有關參數改變時,對工件負荷形變與承受扭力的影響分析,並經實際產品驗證可行,且得到了理想的預期結果。
The vehicle is a very important tool for the human movement especially passenger car, its design requirements not only needs comfortable and safety but also considers economic. Since 1973 the energy crisis made a great impact on the world, all governments have attempted to solve this big problem by many ways, some one developed the newly energy like solar cell or fuel cell but the intelligent method is reduce the fuel consumption by lessening the weight of the car. The vehicle structure is very complicate so how to research the new materials and modify the original structure are more efficient to reach that target. The challenge is very difficult within narrow space of the car. Clutches are an old invention but still as common devices for transmitting power in mechanical systems. The general clutch application is to connect two shafts rotating at different speeds and bring the output shaft up to the speed of the input shaft smoothly, and designed to transmit a certain maximum torque like overload protection devices are designed to prevent damage of machinery or production line in the event of an overload, preventing costly repairs and reducing downtime. But all of above traditional designs of the clutch are consists of more components, which are difficult to miniature. So this article is proposed four types simple structure design which can reduce the weight of car and decay assembly time, furthermore, they can minimize the whole mechanism system much easier.
[1] J.J. Michalek, P.Y. Papalambros, and S.J. Skerlos, “A Study of Fuel Efficiency and
Emission Policy Impact on Optimal Vehicle Design Decisions,” Transactions of the ASME, J. Mechanical Design, Vol. 126, Nov. 2004, pp. 1062-1070.
[2] Denso Co., DENSO Technology 2000. http://www.denso.jp/ja/, pp. 1-38.
[3] 阮呂創義 編著,汽車原理,文京圖書,台北,1997, 第294-303頁。
[4] R. Shaver, Manual Transmission Clutch Systems AE-17. Warrendale, PA: SAE,1997, pp. 1-17.
[5] Vehicle Injuries.com., “Dangerous Power Windows in American Cars, Pickups and SUVs,” http://www.vehicle-injuries.com/window-accidents.htm, 2003.
[6] W.C. Orthwein, Clutches and Brakes. Marcel Dekker Inc, NEW YORK, NY: 1986, pp. 72-125.
[7] J.E. Shigley, C.R. Mischke, Standard Handbook of Machine Design. 2nd ed. McGraw Hill, NEW YORK, NY: 1996, pp. 30.4-30.24.
[8] Boston Gear., “Overload release clutches installation and maintenance instructions,” http://www.bostongear.com/, Boston Gear ORC series model F, pp. 1-7 (2003).
[9] R.E. Garwood, “Predetermind torque release wrench,” U.S. Patent 2601799, Jun. 18 (1951).
[10] R.J. Blattner, “Adjusting torque wrench,” U.S. Patent 4248107, Feb.3, 1981.
[11] O. Webb, “Clutches,” U.S. Patent 3680673, Aug. 1, 1972.
[12] L.W. Johnson, and H.E. Johnson, “Wrench construction,” U.S. Patent 2332972,
Oct. 26, 1943.
[13] J.W. Meese, “Torque wrench,” U.S. Patent 3958469, Mar. 25, 1976.
[14] Z. Rigbi, “An adjustable-torque slipping clutch,” Tribology Int. Vol. 30, No. 6, 1997, pp. 455-457.
[15] F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids. Oxford, Clarendon, 1954, pp. 189-198; 327.
[16] J.F. Archard, “Single Contacts and Multiple Encounters,” J. Appl. Phys. 32, 1961, pp. 1420.
[17] C. Richard, M.R. Cutkosky, and K. MacLean, “Friction Identification for Haptic Display, DSC-7B-2, Proc. Of the 1999 ASME IMECE, Nashville, TN: Nov. 14-19, 1999.
[18] 藤田博之 著, 超微細機械開發のシステム, 工業調查會, 東京, 1992, pp. 86-87.
[19] J.A. Williams, Engineering Tribology. Oxford University, Oxford, NEW YORK, NY: 1994, pp.154.
[20] A.R. Savkoor, “Mechanics of Sliding Friction of Elastomers,” Wear, 113, 1986 pp. 37-60.
[21] 渡辺 茂,高分子材料試驗法.高分子講座,地人書館,牛込,東京.1964, pp. 135-139.
[22] Y.M. Huang and J.S. Shyr, “On Pressure Distributions of Drum Brakes,” Transactions of the ASME, J. Mechanical Design, Vol. 124, March 2002, pp. 115-120.
[23] V. L. Doughtie, A. Vallance, L. F. Kreisle, Design of Machine Members. 4th ed. McGraw Hill, NEW YORK, NY: 1964, pp. 342.
[24] 沃國緯、王元淳,彈性力學,交通大學出版社,上海,1998,第296-300頁。
[25] 薛景文,摩擦學及潤滑技術,兵器工業出版社,北京,1992,第 40-41頁。
[26] Advanced Elastomer Systems, Santoprene Rubber Physical Properties Guide, www.santoprene.com/elit/us/pd.fs/23physprop_us.pdf, 2002.
[27] N. R. Legge, G. Holden, H. E. Schroeder, Thermoplastic Elastomers. Hanser, NEW YORK, NY: 1987, pp.31-34.
[28] Kyodo Yushi, “Multemp PS,” http://www.kyodoyushi.co.jp/products/car.html, 2003.
[29] Y. Uchiyama, “The Effect of Environment on the Friction and Wear of Rubber,” Wear, 110,1986, pp. 369-378.
[30] P.E. Dupont and E.P. Dunlap, “Friction molding and control in boundary Labrication,” Proc. Of the 1993 American Control Conference, San Francisco, CA: June 1993, pp. 1910-1914.
[31] E. H. Baker, L. Kovalevsky, F. L. Rish, Structural Analysis of Shells. McGraw Hill, NEW YORK, NY: 1992, pp. 1-24.
[32] S. P. Timoshenko and S.Woinowsky-Kriegek, Theory of Plates and Shells. 2nd ed. McGraw Hill, NEW YORK, NY: 1957, pp. 429-449.
[33] 溫詩鑄,摩擦學原理,清華大學出版社,北京,1990,第 470-475頁。
[34] Z.Y. Yang, M.G.S. Naylor and D.A. Rigney, “ SLIDING WEAR OF 304 AND 310 STAINLESS STEELS,” Wear, 105 1985. pp 73-76.
[35] J.R. Fitch, “ The Buckling and Post-Buckling Behavior of Spherical Caps Under Concentrated Load,” Int. J. Solid Structures, 1968, Vol. 4. pp. 421-446.
[36] J.R. Fitch, “ Buckling and Post-buckling Behavior of Spherical Caps Under Axisymmertic Load,” AIAA Journal, 1970, pp686-693.
[37] P.W. Jensen, CAM DESIGN AND MANUFACTURE. 2nd ed. Marcel Dekker, Inc., NEW YORK, NY: 1987, pp. 19.
[38] 吳隆庸,洪嘉宏,張信良,盤形凸輪輪廓的向量式表示法,技術學刊,第十七卷,第一期,2002,第59-65頁。
[39] F.Y. Chen, Mechanics and Design of Cam Mechanisms. Pergamon, NEW YORK, NY: 1982, pp. 178-190.
[40] Polyplastics Co, Acetal Copolymer (Duracon) Design Data. Polyplastics Co, Tokyo, Japan. 1986.
[41] R.L. Norton, Design of Machinery. NEW YORK, NY: McGraw Hill, 1999, pp. 706-713.
[42] J. Jung, D.J. Ryu, K.S. Jeong, and K.H. Chang, “Development of a Clutch Disk Torque Sensor for an Automobile,” Transmission and Driveline System Symposium, SAE SP-1598, 2001, pp. 39-46.
[43] H.M. Berlin, Design of OP-AMP Circuits with Experiments. Howard W. SAMS & COMPANY, Indianapolis, Indiana, 1997, pp. 51-79.
[44] National Instruments Corporation, Using Quadrature Encoders with E Series DAQ Boards, Application Note 084, May 1996.
[45] Powerex Inc, CR02AM Lead-Mount Phase Control SCR 0.3 Amperes/400 Volts, Data Sheet, 2002.
[46] Fairchild Semiconducer Corporation, Designer’s Encyclopedia of one-shots, Application Note July 1984, Reversed Oct. 2002.
[47] Fairchild Semiconducer Corporation, MOC70P1/MOC70P2/MOC70P3 Phototransistor Optical Interrupter Switch. Data Sheet April 2001.
[48] M.G. Say and E.O. Taylor, Direct Current Machines. John Wiley & Sons, NEW YORK, NY: 1980, pp. 191.
[49] S.J. Campbell, Solid-State AC Motor Controls Selection and Application. Marcel Dekker, Inc., NEW YORK, NY: 1987, pp. 58.
[50] E. Rabinowicz, Friction and Wear of Materials. 2nd ed. John Wiley, NEW YORK, NY: 1995, pp.109-124.
[51] M. Hundal, “Design for Recycling and Remanufacturing,” International Design Conference-Design 2000, Dubrovnik, May 23-26, 2000. pp. 1-6.
[52] K.T. Ulrich and S.D. Eppinger, Product Design and Development. McGraw Hill, NEW YORK, NY: 1995, pp. 188-196.
[53] J.R. Rice and A.L. Ruina, “Stability of Steady Frictional Slipping,” Journal of Applied Mechanics, Vol. 50, June 1983, pp. 343-349.
[54] I.G. Goryacheva, P.T. Rajeev, and T.N. Farris, “Wear in Partial Slip Contact,” Transactions of the ASME, Vol. 123, Oct. 2001, pp. 848-856.
[55] R.G. Budynas, Advanced Strength and Applied Stress Analysis. 2nd ed. McGraw Hill, NEW YORK, NY: 1999, pp. 233-235.
[56] A.P. Boresi, R.J. Schmidt and O.M. Sidebottom, Advanced mechanics of materials. 5th ed. John Wiley, NEW YORK, NY: 1993, pp.363-379.
[57] Y.Y. Hsieh and S.T. Mau, Elementary Theory of Structures. 4 th ed. Prentice-Hall, NEW YORK, NY: 1998, pp. 227-230.
[58] Polyplastics Co., Acetal Copolymer DURACON M90-44, Data Sheet 2005.
[59] Polyplastics Co., Acetal Copolymer DURACON GR-20, Data Sheet 2005.
[60] W.A. de Morais, J.R.M. d’Almeida, and L.B. Godefroid, “Effect of the Fiber Reinforcement on the Low Energy Impact Behavior of Fabric Reinforced Resin Matrix Composite Materials,” J. Of the Braz. Soc. Of Mech. Sci. & Eng. Vol. XXV, No. 4, 2003, pp.325-328.
[61] H. Unal and A. Mimaroglu, “Influence of filler Addition on the Mechanical Properties of Nylon-6 Polymer,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 5, 2004, pp. 461-469.
[62] Polyplastics Co., Product Introduction, http://www.polyplastics.com/en/duracon.php, 2005.
[63] M. Madou, Fundamentals of Microfabrication. CRC, Boca Raton, Florida: 1997,pp. 217-264.
[64] C.L. Kuo, S.T. Chen Y.J. Wu and T.T. Yen, "Research of 3D Micro-EDM Machining Technique ", Proceedings of SPIE 1997, pp157-162.
[65] M. J. Vasile, C.R. Friedrich, B. Kikkeri and R. McElhannon “Micrometer-Scale machining: Tool fabrication and initial results,” Precision Engineering, Vol.19.No. 2/3 Oct./Nov. 1996, pp.180-186.
[66] J.J. Sniegowski, "Chemical-mechanical polishing:enhancing the manufactur -ability of MEMS, " Precision Engineering,14-15 Oct. Austin, Texas, 1996, pp104-115.
[67] L.S. Fan, R.S. Muller, W. Yun, R.T. Howe and J. Huang, "Spiral Microstructures for the Measurement of Average Strain Gradients in Thin Films," IEEE Micromechanics and MEMS, Classic and Seminal Papers to 1990, pp509-513.
[68] W.C. Tang, T.H. Nguyen and R.T. Howe, "Laterally Driven Polysilicon Resonant Microstructures," IEEE Micromechanics and MEMS, Classic and Seminal Papers to 1990, pp187-193.
[69] L.S. Tavrow, S.F. Bart and J.H. Lang, "Operational Characteristics of Microfabricated Electric Motors," Technical Digest, IEEE Transducers ’91 International Conference on Solid-State Sensors and Actuators,1991, pp877-881.
[70] K. Deng, M. Mehregany and A. S. Dewa, "A Simple Fabrication Process for Side-Drive Micromotors," Technical Digest, IEEE Transducers ’93 International Conference on Solid-State Sensors and Actuators,1993, pp756-759.
[71] R. Legtenberg, E. Berenschot, M. Elwenspoek and J. H. Fluitman, "A Fabrication Process for Electrostatic Microactuators with Integrated Gear Linkages," Journal of Microelectromechanical Systems, VOL. 6, No.3, Sep. 1997, pp234-241.
[72] H. Han, “ A Micromechanical Fastening System and It’s Applications”, Phd. Thesis, Carnige Mellon University, 1992.
[73] H. Yamaguchi, T, Shinmura and T. Kaneko "Development of a new Internal Finishing Process Applying Process Applying Magnetic Abrasive Finishing by Use of Pole Rotation Syatem," Int. J. Japan Soc. Prec. Eng, Vol. 30, No.4 Dec. 1996, pp317-322.
[74] N.R. Tas, C. Gui and M. Elwenspoek, “Static friction in elastic adhesive MEMS contacts, models and experiment,” Proc. of IEEE MEMS 2000, Miyazaki, Japan, Jan. 2000, pp193-198.
[75] S. Suzuki, T. Matsuura, M. Uchizawa, S. Yura and H. Shibata, “ Friction and Wear Studies on Lubricants and Materials Applicable to MEMS,” Proc. of IEEE MEMS 1991, Nara, Japan, pp 143-147.
[76] 堀江三喜男, マイクロカ・トルクの測定・評価,精密工學會會誌, Vol. 63, No.3, 東京, 1997, pp. 337-340.
[77] M. Mehregany, S.D. Senturia, and J.H. Lang, “ Friction and Wear in Microfabricated Harmonic Side-drive Motors,” Micromechanics and MEMS NEW YORK, NY: IEEE Press, 1990, pp168-173.
[78] Q. Chen and G.P. Carman, “microscale tribology (friction) measurement and influence of crystal orientation and fabrication process,” Proc. of IEEE MEMS 2000, Miyazaki, Japan, Jan. 2000, pp657-661.
[79] T. Yi and C.J. Kim, “Measurement of mechanical properties for MEMS materials”, Meas. Sci. Technol. 10, 1999, pp706-716.
[80] K. Noguchi, H. Fujita and M. Suzuki, “The measurements of friction on micromechatoronics elements,” Proc. of IEEE MEMS 1991, Nara, Japan, pp 148-153.
[81] MEMS and Nanotechnology Clearinghouse, Materials Database Polysilicon film, http://www.memsnet.org/mems/, 2002.
[82] B. Bhushan, “Nanotribology and nanomechanics of MEMS device,” Proc. of IEEE MEMS 1996, San Diego, California, Feb. 1996, pp91-98.
[83] S.Sundararajan and B. Bhushan, “Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope,” J. Vac. Sci. Technol. A, Vol. 19, No. 4, 2001, pp1777-1785.
[84] K.J. Wahl, S.V. Stepnowski and W.N. Unertl, “Viscoelastic effects in nanometer-scale contacts under shear,” Tribology Letters, Vol 5, pp103-107, 1998.
[85] E.G. Papadopoulos and G.C. Chasparis, “Analysis and model-based control of servomechanisms with friction,” Proc. Of the International Conference on Intelligent Roberts and Systems (IROS 2002), EPFL Lausanne, Switzerland.
[86] R.G. Landers and A.G. Ulsoy, “Model base control, machining force control,” ASME J. of Dynamics System, Measurement, and Control, Vol.122, No.3, pp.521-527.
[87] P. Song, P. Krans, V. Kumar, and P. Dupont, “Analysis of Rigid-Body Dynamic Modelings for Simulation of System with Frictional Contacts,” Transactions of the ASME Vol. 68, Jan. 2001, pp. 118-128.
[88] C.M. Close, D.K. Frederick and J.C. Newell, Modeling and analysis of dynamic systems. 3rd. Ed., John Wiley & sons, New York, NY: 2002, pp. 103-126.
[89] Q.A. Huang and N.K.S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9, 1999, pp64-77.
[90] SAS IP, Inc. Coupled- Field Analysis Guide. Release 5.3, 000647 1st Edition 1996, pp. 3-10~3-22.
[91] 黃瑞星、黃義佑、陳建亨,面型微機電共用晶片,使用說明手冊,http://nsc-cmems.nthu.edu.tw/index.php3?index=wafer/DOC/MPMC-3.pdf, 2000.
[92] MEMS Technology Applications Center, Three-Layer Polysilicon Surface Micromachining Process., http://mems.mcnc.org/smumps/Mumps.html, 2000.
[93] W. Fang and J.A. Wickert, “Comments on measuring thin-film stresses using bi-layer micromachined beams,” J. of Micromech. Microeng. 5, 1995, pp276-281.
[94] K.A. Shaw, Z.L. Zhang and N.C. MacDonald, “ SCREAM I: Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for Micro-Electro Mechanical Structures,” Sensor and Actuators A 40 (1994) pp210-213.
[95] J.D. Nicoud and O. Matthey, “ Developing intelligent micro-mechanisms,” 1997 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 1997, pp119-124.