簡易檢索 / 詳目顯示

研究生: 張嘉麟
Chang, Chia-Lin
論文名稱: 利用電場致發光學二倍頻研究高介電質與矽(鍺)之介面
Field-Induced Second Harmonic Generation of High-k Gate Dielectric/Si (Ge) Heterointerface
指導教授: 郭瑞年
Kwo, Raynien
洪銘輝
Hong, Minghwei
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 二倍頻二次諧波場致二倍頻半導體氧化鉿能帶曲折氧化鎵(氧化釓)高介電常數氧化物金氧半導體電容偏壓二倍頻介面態密度
外文關鍵詞: second harmonic generation, elecric field induced second harmonic generation, EFISHG, hafnium oxide, MOS capacitor, Silicon, ARSHG, interface trap, oxide trap, Ga2O3(Gd2O3), Si(001), Chromium, bias-SHG, SHG, MBE, Ge
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體元件尺寸逐漸微小化,我們將遭遇到量子效應所帶來的嚴重瓶頸。因此新穎高介電常數氧化物[例如氧化鎵(氧化釓)]將扮演著如何繼續將元件製作推向一個嶄新歷程的重要角色。當我們在製作這些新穎材料,第一個所遇到的問題即是其元件組成上的穩定性及可靠性,這些問題往往都來自於半導體的異質介面品質與特性,此時具有高度介面靈敏度的二倍頻 (二次諧波) 技術即是一個合適探討此種表面物理問題的適當工具。
    本論文研究高介電常數氧化物與半導體的異質介面中介面態和氧化層缺陷對半導體表面能帶曲折的影響。我們藉由分析場致二倍頻的大小來觀測半導體表面能帶受曲折的程度。研究發現樣品經由熱處理之後,場致二倍頻強度將減小,意味介面態及氧化層的缺陷密度已經大量的減少。
    更進一步我們進行了外加偏壓的二倍頻實驗,探討介面態於半導體能隙間的分布情形。藉由外加偏壓操控表面能帶曲折程度,同時量測二倍頻隨著不同偏壓的訊號強度,我們發現二倍頻訊號在形成電子(電洞)空乏區條件的電壓範圍(depletion regime)有明顯的變化。實驗分析結果推得金氧半導體(鉻/氧化鉿/矽)電容的平帶電壓大約在 -0.3V左右。在未來進一步的分析上,將用偏壓二倍頻的實驗結果與電性量測的結果來做比較而進一步推算矽(鍺)金氧半導體電容的介面態密度以及精確的平帶電壓大小。


    As the scaling of the silicon metal-oxide-semiconductor (MOS) transistor approaches the fundamental limit due to the quantum tunneling effect, the innovative high-k oxide, e.g. Ga2O3(Gd2O3)[GGO], plays an important role to continue the historic progress in microelectronic devices. Since the reliability and stability of semiconductor devices are intimately related to their surface conditions, second harmonic generation (SHG) can be a suitable technique to explore the physical properties of the surface or buried interface due to its surface and interface sensitivity.
    In this thesis we carried out a comprehensive study to reveal the initial band bending of semiconductor due to the existence of interfacial traps at the heterointerface between the high-k dielectric and the semiconductor bulk. We also propose to investigate the initial band-banding by analyzing the electric field-induced SHG (EFISHG). Azimuthal rotational-angle SHG (ARSHG) measurement reveals that the EFISH response can be suppressed by the reduction of oxide and interfacial traps via the post deposition treatments.
    Furthermore, we developed a new approach, so called the bias-dependent ARSHG measurement, to investigate the interfacial-state density (Dit) of Cr/HfO2/Si MOS structure. By varying the bias voltage, the surface band-bending is modified and the EFISH changes dramatically in the heterointerface. The analysis of the experimental result reveals the flat band condition at -0.3V in the Cr/HfO2/Si MOS capacitor. In the future work, along with a comparison to the electrical characteristics, can provide an effective way to extract the quantity of interfacial electronic states and flat-band voltage for the Si- and Ge-based MOS devices.

    Chapter 1 Introduction............................................... 1 1.1 MOS Physics and Technology....................................................................... 1 1.2Historical Background of the Nonlinear Optics............................................. 2 1.3Scope of the Chapters................................................................................... 3 Chapter 2 Nonlinear Optical Phenomenology and MOS Physics............... 4 2.1 Nonlinear Susceptibility of a Classical Anharmonic Oscillator...................... 4 2.1.1 Noncentrosymmetry Media.................................................................. 4 2.1.2 Centrosymmetry Media........................................................................ 6 2.2 Phenomenological Theory of Second Harmonic Generation for Cubic Centrosymmetric Crystals.................................................................. 8 2.2.1 Wave Propagation in Nonlinear Materials............................................ 8 2.2.2 Nonlocal Effect SHG from the Bulk Region............................................ 12 2.2.3 SHG from the Surface Region................................................................ 14 2.2.4 Electric-Field-Induced Second Harmonic Generation............................ 16 2.2.5 Calculation of SHG for Cubic Centrosymmetric Crystal of the (001) Surface.................................................................................... 18 2.3 Metal-Oxide-Semiconductor Physics............................................................. 30 2.3.1 Basic Principles of MOS Capacitor.......................................................... 30 2.3.2 Charges in the Space-Charge layer and Its Corresponding Electric Field Distribution.......................................... 33 2.3.3 Types of Oxide Traps and Its Properties................................................. 40 2.54 Detection of Charge Trapping by Electric-Field-Induced Second harmonic Generation...................................................................... 46 2.4.1 Unbiased ARSHG Characterization........................................................ 46 2.4.1 Bias-Dependent SHG Measurement..................................................... 47 2.5 Theoretical Prediction of Bias-Dependent SHG........................................... 48 2.5.1 Green Function Formalism for EHISHG................................................ 49 Chapter 3: Experimental Procedure................................................................. 53 3.1 Sample Preparation..................................................................................... 53 3.1.1 Surface Cleaning Process..................................................................... 53 3.1.2 Film Deposition Process in MBE system.............................................. 54 3.1.3 Heat and Plasma Treatment Process................................................... 57 3.1.4 Metal Electrode Deposition Process.................................................... 58 3.2 Azimuthal-Angle-Resolved Second Harmonic Generation.......................... 62 3.2.1 Optical Optimization Process............................................................... 63 3.2.2 Bias-Dependent ARSHG Experiment.................................................... 64 3.3 Capacitance-Voltage Measurement............................................................ 67 Chapter 4: Result and Discussion..................................................................... 69 4.1 Azimuthal Angle-Resolved SHG Measurement........................................... 69 4.1.1 Hydrogen Termination on the BOE-Etched Silicon Surface.................. 69 4.1.2 Roughness Studies of the 2%HF-Etched Ge Surface............................ 71 4.1.3 Charge Trapping under the MBE-Oxide Layer...................................... 76 4.2 Simulated Result for Bias-Dependent SHG.................................................. 84 4.3 Bias-Dependent ARSHG Measurement....................................................... 86 4.4 The Relative-Phase Analysis........................................................................ 91 4.5 Further Works............................................................................................. 95 Chapter 5 Conclusion......................................................................................... 96 Reference............................................................................................................. 99

    [1] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, Physical Review Letter 7, 119.
    [2] N. Bloembergen, et al., Phys. Rev. Lett 18, 167 (1967).
    [3] N. Bloembergen and P. S. Pershan, Physical Review 128, 606 (1962).
    [4] J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, Physical Review 15 (1962).
    [5] M. Hong et al., Journal of Crystal Growth 175, 422 (1997).
    [6] J. Kwo et al., Journal of Vacuum Science & Technology B 17,1294 (1999).
    [7] Y. R. Shen, et al., Phys. Rev. Lett 46, 145 (1980).
    [8] H. W. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett 51, 1983 (1983).
    [9] P. Guyot, et al., Phys. Rev. B 33, 8254 (1986).
    [10] P. Guyot, et al., Phys. Rev. B, 38, 7985 (1988).
    [11] J.E. Sipe, et al., Phys. Rev. B 35, 1129 (1987).
    [12] J. E. Sipe, Journal of Optical Society of America 4, 481 (1987).
    [13] G. Lupke et al., Journal of Optical Society of America 11, 33 (1994).
    [14] L. K. Chu et al., Appl. Phys. Lett. 94, 202108 (2009).
    [15] R. L. Chu et al., J. Vac. Sci. Technol. B (in press).
    [16] S.M. Sze, Physics of semiconductor devices(3rd) , Wiley.
    [17] J. P. Colinge, C. A. Colinge, Physics of semiconductor devices, Kluwer Academic Publishers(2002).
    [18] Robert W. Boyd, Nonlinear Optics, ELSEVIER ACADEMIC PRESS.
    [19] Amnon Yariv, Quantum Electronics(3rd), 1989 Wiley.
    [20] Y.R. Shen, The Principles of Nonlinear Optics, Wiley.
    [21] Nicollian and Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley.
    [22] J. F. NYE, F. R. S, Physical Properties of Crystals, Clarendon Press, OXFORD.
    [23] T.F. Heinz, “Second-Order Nonlinear Optical Effects at Surface and Interfaces”, Nonlinear Surface Electromagnetic Phenomena (Modern Problems in Condensed Matter Sciences), Elsevier Science Publisher B.V. (1991).
    [24] Butcher, Paul N, The elements of nonlinear optics, Cambridge University Press.
    [25] Monch, Winfried, Semiconductor surfaces and interfaces(3rd), Springer.
    [26] J. 1. Dadap et al., Applied Physics Letter 64, 2139 (1994).
    [27] M.C. Downer et al., Surf. Interface Anal. 31, 966(2001).
    [28] G. Lupke, Surface Science Report 35, 75 (1999).
    [29] J. I Dadap et al., Physical Review B 56, 13367 (1997).
    [30] Z. Xu et al., Journal of Vacuum Science & Technology B 15, 1059 (1997).
    [31] Yong Qiang An et al., Physical Review B 67, 193302 (2003).
    [32] R. Carriles et al., Applied Physics Letter 88, 161120 (2006).
    [33] R. Carriles et al., Journal of Vacuum Science & Technology B 24, 2160 (2006).
    [34] J. G. Mihaychuk et al., Physical Review B 59, 2164 (1999).
    [35] Y. V. White et al., Applied Physics Letter 88, 062102 (2006).
    [36] V. Fomenko et al., Journal of Applied Physics, 97, 083711 (2005).
    [37] R. W. Terhune et al., Phys. Rev. Lett 8, 404 (1962).
    [38] W. K. Burns and Bloembergen, Physical Review B 4, 3437 (1971).
    [39] Matthew Reid et al., Physical Review B 72, 035201 (2005).
    [40] G. Lupke, C. Meyer, C. Ohlhoff, and H. Kurz, et al., Optics letters 20, 1997 (1995).
    [41] O. A. Aktsipetrov et al., Sov. Phys. Solid State 28, 1822 (1986).
    [42] O. A. Aktsipetrov et al., Sov. J. Quantum Electron 22, 807 (1991).
    [43] J. I Dadap et al., Physical Review B 53, 7607 (1996).
    [44] C. Ohlhoff et al., Physical Review B 55, 4596 (1997).
    [45] O. A. Aktsipetrov et al., Physical Review B 60, 8924 (1999).
    [46] T. V. Dolgova et al., Physical Review B 68, 073307 (2003).
    [47] J. Fang et al., Applied Physics Letter 75, 3506 (1999).
    [48] O. A. Aktsipetrov et al., JEPT Letters 89, 58 (2009).
    [49] V. K. Valve et al., Applied Physics Letter 94, 061123 (2009).
    [50] H. Park et al., Applied Physics Letter 95, 062102 (2009).
    [51] Daeyoung Lim and Richard Haight, Journal of Vacuum Science & Technology A 23, 1698 (2005).
    [51] O. A. Aktsipetrov et al., Physical Review Letter, 78,46
    [52] J. D. Plummer, M. D. Deal,and P. B. GriffinSilicon, “VLSI Technology Fundamentals, Practice and Modeling”, Prentice Hall (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE