簡易檢索 / 詳目顯示

研究生: 徐志文
論文名稱: 人類非小型肺癌細胞在逆境下熱休克蛋白70的轉錄調節以及葡萄糖調控蛋白78的抗細胞凋亡之機轉
Transcriptional regulation of heat shock protein 70 and anti-apoptotic mechanism of glucose regulated protein 78 in stressed non-small cell lung cancer H460 cells
指導教授: 黎耀基
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 83
中文關鍵詞: 逆境熱休克蛋白70轉錄調節葡萄糖調控蛋白78抗細胞凋亡
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱休克蛋白基因是一組在外界刺激下被誘導的基因群,且其蛋白質產物可將細胞內大多數受到損害的蛋白質適當的摺疊以維持其功能。根據其分子量通常可被細分為幾個家族。其中,熱休克蛋白70是最為重要的家族之一,由於其具抗細胞凋亡的能力,所以與癌細胞轉型息息相關。然而,熱休克蛋白70基因的調節及其蛋白抗細胞凋亡的機制並不十分清楚。因而促使我們進行本研究工作。
    首先,本研究以抗癌藥膠達那黴素處理人類非小型肺癌細胞H460進行熱休克蛋白70家族的基因調節。利用電噴霧串聯質譜及北方墨漬法分析,發現熱休克蛋白70-1/2為此家族中主要被誘導的同質體。其中的轉錄活化也以膠體電泳位移分析獲得證實。再者,從激酶抑制劑的掃描分析中發現,蛋白質激酶C抑制劑可抑制熱休克蛋白70-1/2的誘導,也表示蛋白質激酶C可能參與熱休克蛋白70-1/2誘導的訊息傳遞。此外,膠達那黴素可短暫地引起細胞內鈣離子的增加,螯合細胞內的鈣離子或耗盡細胞內鈣離子的儲存也降低了熱休克蛋白70-1/2的誘導。因此,膠達那黴素可能透過鈣離子及蛋白質激酶C誘導熱休克蛋白70-1/2。
    另一方面,熱休克蛋白70家族中的另一成員葡萄糖調控蛋白78可保護細胞免於在內質網逆境或DNA損壞時所產生的細胞凋亡。本研究亦發現葡萄糖調控蛋白78是H460細胞在內質網逆境中主要被誘導的蛋白質。然而,絲氨酸蛋白質水解酵素抑制劑AEBSF可使細胞在內質網逆境狀況抑制葡萄糖調控蛋白78的誘導、增加粒線體通透性及增加細胞凋亡。同時AEBSF也促進內質網逆境時Raf-1的降解並減少其磷酸化。親和性結合及胞器分離試驗結果亦顯示葡萄糖調控蛋白78與Raf-1同時存在粒線體外膜上。Raf-1的基質BAD磷酸化也在內質網逆境反應中增加,但是預處理AEBSF卻減少其磷酸化。此外,大量表達葡萄糖調控蛋白78或Raf-1使細胞減少內質網逆境產生的細胞凋亡。這些結果顯示葡萄糖調控蛋白78藉由保護Raf-1維持粒線體的通透性,進而減少內質網逆境引起的細胞凋亡。
    綜言之,本研究發現熱休克蛋白70家族在基因調節上以及抗細胞凋亡的分子機制,相關研究成果可能貢獻於癌症的詳細分子機制及化療的新方向。


    Heat shock proteins (HSPs) are a defined set of genes response to a variety of external stimuli and their products are mainly molecular chaperones that are crucially involved in the maintenance of the proper functions of a large range of intracellular proteins. The stress proteins are usually sub-classified a number of HSPs families according to their molecular weight. Among them, the HSP70s is one of the most important HSPs families and highly associated with tumor transformation because of its anti-apoptotic function. However, the detailed mechanisms of HSP70s in gene regulation and anti-apoptosis are not fully understood.
    First of all, we examined gene regulation of HSP70s in geldanamycin (GA, a potent anti-cancer drug)-treated human non-small cell lung cancer H460 cells. In this study, we showed that the HSP70-1/2 are the major inducible forms under GA treatment using LC-ESI-MS/MS and Northern blotting analysis. Transactivation of HSP70-1/2 was further determined by electrophoretic mobility-shift assay using heat shock element as a probe. The signaling pathway mediators involved in HSP70-1/2 transactivation were screened by the kinase inhibitor scanning technique. The protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor Gö-6976 diminished GA-induced HSP70-1/2, suggesting an involvement of the PKC in the process. Moreover, GA treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased GA-transactivated HSP70-1/2 expression. Taken together, our results demonstrated that GA induces specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.
    On the other hand, the chaperone glucose-regulated protein 78 (GRP78), a member of HSP70s, protects cells from cytotoxicity induced by DNA damage or endoplasmic reticulum (ER) stress. In this study, we showed that GRP78 is a major inducible protein in H460 cells treated with ER stress inducers including A23187 and thapsigargin. 4-[2-aminoethyl]-benzenesulfonyl fluoride hydrochloride (AEBSF), an inhibitor of serine protease, diminished GRP78 induction, enhanced mitochondrial permeability and augmented apoptosis in H460 cells during ER stress. Simultaneously, AEBSF promoted Raf-1 degradation and decreased phosphorylation level of Raf-1 at Ser338 and/or Tyr340 during ER stress. His-tag affinity pull-down assay and subcellular fractionation results also demonstrated that GRP78 associateed and colocalized with Raf-1 on the outer membrane of mitochondria. Treatment of cells with ER stress inducers inactivated Bcl-XL/Bcl-2-associated death promoter (BAD) by phosphorylation at Ser75, which is a phosphorylation site by Raf-1. Nevertheless, AEBSF attenuated phosphorylation of BAD leading to cytochrome c release from mitochondria. Additionally, overexpression of GRP78 and/or Raf-1 protected cells from ER stress-induced apoptosis. These results indicate that GRP78 may chaperone Raf-1 to maintain mitochondrial permeability and thus protects cells from ER stress-induced apoptosis.
    Taken together, we discovered that molecular mechanisms of HSP70s in gene regulation and anti-apoptotic function. These findings might provide a possible pharmacological manipulation for cancer exposed to chemotherapy.

    Chinese abstract English abstract Abbreviations Chapter 1 General introduction Chapter 2 Transactivation of HSP70-1/2 in Geldanamycin-Treated Human Non-Small Cell Lung Cancer H460 Cells: Involvement of Intracellular Calcium and Protein Kinase C Chapter 3 GRP78 and Raf-1 Cooperatively Confer Resistance to Endoplasmic Reticulum Stress-Induced Apoptosis Chapter 4 Conclusion and perspective Reference Appendix Publication lists

    Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA. 2003. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94-6.
    Armstrong JL, Veal GJ, Redfern CP, Lovat PE. 2007. Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours. Apoptosis 12:613-22.
    Baek SH, Lee UY, Park EM, Han MY, Lee YS, Park YM. 2001. Role of protein kinase Cdelta in transmitting hypoxia signal to HSF and HIF-1. J Cell Physiol 188:223-35.
    Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S. 2002. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8:816-24.
    Beere HM. 2005. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115:2633-9.
    Bharadwaj S, Ali A, Ovsenek N. 1999. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 19:8033-41.
    Bronisz A, Gajkowska B, Domanska-Janik K. 2002. PKC and Raf-1 inhibition-related apoptotic signalling in N2a cells. J Neurochem 81:1176-84.
    Chao TS, Abe M, Hershenson MB, Gomes I, Rosner MR. 1997. Src tyrosine kinase mediates stimulation of Raf-1 and mitogen-activated protein kinase by the tumor promoter thapsigargin. Cancer Res 57:3168-73.
    Christians ES, Yan LJ, Benjamin IJ. 2002. Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury. Crit Care Med 30:S43-S50.
    Chung KT, Shen Y, Hendershot LM. 2002. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557-63.
    Croute F, Beau B, Arrabit C, Gaubin Y, Delmas F, Murat JC, Soleilhavoup JP. 2000. Pattern of stress protein expression in human lung cell-line A549 after short- or long-term exposure to cadmium. Environ Health Perspect 108:55-60.
    Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z, Lesniewski R, Henkin J. 2005. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663-72.
    Debatin KM, Poncet D, Kroemer G. 2002. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786-803.
    Dong D, Ko B, Baumeister P, Swenson S, Costa F, Markland F, Stiles C, Patterson JB, Bates SE, Lee AS. 2005. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65:5785-91.
    Elia G, De Marco A, Rossi A, Santoro MG. 1996. Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding activity by the heat shock transcription factor. J Biol Chem 271:16111-8.
    Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY, Bode AM, Dong Z. 2006. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66:9260-9.
    Febbraio MA, Steensberg A, Fischer CP, Keller C, Hiscock N, Pedersen BK. 2002. IL-6 activates HSP72 gene expression in human skeletal muscle. Biochem Biophys Res Commun 296:1264-6.
    Ferri KF, Kroemer G. 2001. Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255-63.
    Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-50.
    Hohfeld J, Hartl FU. 1994. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J Cell Biol 126:305-15.
    Holmberg CI, Roos PM, Lord JM, Eriksson JE, Sistonen L. 1998. Conventional and novel PKC isoenzymes modify the heat-induced stress response but are not activated by heat shock. J Cell Sci 111 ( Pt 22):3357-65.
    Huang HC, Liu YC, Liu SH, Tzang BS, Lee WC. 2002. Geldanamycin inhibits trichostatin A-induced cell death and histone H4 hyperacetylation in COS-7 cells. Life Sci 70:1763-75.
    Hwang TS, Han HS, Choi HK, Lee YJ, Kim YJ, Han MY, Park YM. 2003. Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J Gastroenterol Hepatol 18:690-700.
    Jaattela M. 1999. Heat shock proteins as cellular lifeguards. Ann Med 31:261-71.
    Jaattela M, Wissing D. 1992. Emerging role of heat shock proteins in biology and medicine. Ann Med 24:249-58.
    Jacquier-Sarlin MR, Jornot L, Polla BS. 1995. Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J Biol Chem 270:14094-9.
    Jakubowicz-Gil J, Paduch R, Gawron A, Kandefer-Szerszen M. 2002. The effect of cisplatin, etoposide and quercetin on Hsp72 expression. Pol J Pathol 53:133-7.
    Jiang P, Du W, Heese K, Wu M. 2006. The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 26:9071-82.
    Jin QH, Zhao B, Zhang XJ. 2004. Cytochrome c release and endoplasmic reticulum stress are involved in caspase-dependent apoptosis induced by G418. Cell Mol Life Sci 61:1816-25.
    Jin S, Zhuo Y, Guo W, Field J. 2005. p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 280:24698-705.
    Jolly C, Morimoto RI. 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564-72.
    Kadowaki H, Nishitoh H, Ichijo H. 2004. Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 28:93-100.
    Kao JP. 1994. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol 40:155-81.
    Kelekar A, Chang BS, Harlan JE, Fesik SW, Thompson CB. 1997. Bad is a BH3 domain-containing protein that forms an inactivating dimer with Bcl-XL. Mol Cell Biol 17:7040-6.
    Kiang JG, Gist ID, Tsokos GC. 2000. Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells. Mol Cell Biochem 204:169-78.
    Kiang JG, Kiang SC, Juang YT, Tsokos GC. 2002. N(omega)-nitro-L-arginine inhibits inducible HSP-70 via Ca(2+), PKC, and PKA in human intestinal epithelial T84 cells. Am J Physiol Gastrointest Liver Physiol 282:G415-23.
    Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. 2006. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348-58.
    Knarr G, Kies U, Bell S, Mayer M, Buchner J. 2002. Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle. J Mol Biol 318:611-20.
    Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-5.
    Le Mellay V, Troppmair J, Benz R, Rapp UR. 2002. Negative regulation of mitochondrial VDAC channels by C-Raf kinase. BMC Cell Biol 3:14.
    Lee AS. 2005. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35:373-81.
    Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. 2006. GRP78 as a Novel Predictor of Responsiveness to Chemotherapy in Breast Cancer. Cancer Res 66:7849-7853.
    Lee WC, Lee YC, Perng MD, Chen CM, Lai YK. 1993. Induction of vimentin modification and vimentin-HSP72 association by withangulatin A in 9L rat brain tumor cells. J Cell Biochem 52:253-65.
    Leung TK, Hall C, Rajendran M, Spurr NK, Lim L. 1992. The human heat-shock genes HSPA6 and HSPA7 are both expressed and localize to chromosome 1. Genomics 12:74-9.
    Lewis TS, Shapiro PS, Ahn NG. 1998. Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49-139.
    Li J, Lee B, Lee AS. 2006. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260-70.
    Li J, Sha B. 2001a. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB N-terminal domain. Acta Crystallogr D Biol Crystallogr 57:1933-5.
    Li J, Sha B. 2001b. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1). Acta Crystallogr D Biol Crystallogr 57:909-11.
    Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, Lee AS. 2000. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20:5096-106.
    Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81:355-64.
    Macario AJ, Conway de Macario E. 2005. Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489-501.
    Mayer MP, Bukau B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670-84.
    Milner CM, Campbell RD. 1990. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32:242-51.
    Misra UK, Deedwania R, Pizzo SV. 2005. Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280:26278-86.
    Miyake H, Hara I, Arakawa S, Kamidono S. 2000. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem 77:396-408.
    Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788-96.
    Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. 2000. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146-59.
    Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI. 1990. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci U S A 87:3748-52.
    Namba T, Ishihara T, Tanaka K, Hoshino T, Mizushima T. 2007. Transcriptional activation of ATF6 by endoplasmic reticulum stressors. Biochem Biophys Res Commun 355:543-8.
    Narita N, Noda I, Ohtsubo T, Fujieda S, Tokuriki M, Saito T, Saito H. 2002. Analysis of heat-shock related gene expression in head-and-neck cancer using cDNA arrays. Int J Radiat Oncol Biol Phys 53:190-6.
    Neckers L, Mimnaugh E, Schulte TW. 1999. Hsp90 as an anti-cancer target. Drug Resist Updat 2:165-172.
    Nihei T, Takahashi S, Sagae S, Sato N, Kikuchi K. 1993. Protein interaction of retinoblastoma gene product pRb110 with M(r) 73,000 heat shock cognate protein. Cancer Res 53:1702-5.
    Nuccitelli R, Yim DL, Smart T. 1993. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Dev Biol 158:200-12.
    O'Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007-21.
    Okada T, Haze K, Nadanaka S, Yoshida H, Seidah NG, Hirano Y, Sato R, Negishi M, Mori K. 2003. A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem 278:31024-32.
    Panka DJ, Atkins MB, Mier JW. 2006. Targeting the mitogen-activated protein kinase pathway in the treatment of malignant melanoma. Clin Cancer Res 12:2371s-2375s.
    Peterson SR, Jesch SA, Chamberlin TN, Dvir A, Rabindran SK, Wu C, Dynan WS. 1995. Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 270:1449-54.
    Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG, Lee AS, Cote RJ. 2006. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 12:5987-93.
    Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA. 2006. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66:1702-11.
    Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. 2002. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514:122-8.
    Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. 2003. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915-24.
    Ritossa E 1962. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571-573.
    Rubio E, Valenciano AI, Segundo C, Sanchez N, de Pablo F, de la Rosa EJ. 2002. Programmed cell death in the neurulating embryo is prevented by the chaperone heat shock cognate 70. Eur J Neurosci 15:1646-54.
    Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ. 2005. Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5:3048-59.
    Rutkowski DT, Kaufman RJ. 2004. A trip to the ER: coping with stress. Trends Cell Biol 14:20-8.
    Scheffler NK, Miller SW, Carroll AK, Anderson C, Davis RE, Ghosh SS, Gibson BW. 2001. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion 1:161-79.
    Schroder M, Kaufman RJ. 2005. The mammalian unfolded protein response. Annu Rev Biochem 74:739-89.
    Shaner L, Morano KA. 2007. All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12:1-8.
    Shen J, Prywes R. 2004. Dependence of site-2 protease cleavage of ATF6 on prior site-1 protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem 279:43046-51.
    Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850-8.
    Shi Y, Mosser DD, Morimoto RI. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654-66.
    Shu CW, Cheng NL, Chang WM, Tseng TL, Lai YK. 2005. Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 94:1199-209.
    Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M. 2003. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38:605-14.
    Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. 2001. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum Mol Genet 10:1307-15.
    Song MS, Park YK, Lee JH, Park K. 2001. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res 61:8322-30.
    Sun FC, Wei S, Li CW, Chang YS, Chao CC, Lai YK. 2006. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem J 396:31-9.
    Supko JG, Hickman RL, Grever MR, Malspeis L. 1995. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305-15.
    Terauchi R, Takahashi KA, Arai Y, Ikeda T, Ohashi S, Imanishi J, Mazda O, Kubo T. 2003. Hsp70 prevents nitric oxide-induced apoptosis in articular chondrocytes. Arthritis Rheum 48:1562-8.
    Tsujimoto Y. 2003. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158-67.
    van der Straten A, Rommel C, Dickson B, Hafen E. 1997. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. Embo J 16:1961-9.
    Wan Q, Kuang E, Dong W, Zhou S, Xu H, Qi Y, Liu Y. 2007. Reticulon 3 mediates Bcl-2 accumulation in mitochondria in response to endoplasmic reticulum stress. Apoptosis 12:319-328.
    Wang HG, Rapp UR, Reed JC. 1996. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87:629-38.
    Whitesell L, Sutphin P, An WG, Schulte T, Blagosklonny MV, Neckers L. 1997. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 14:2809-16.
    Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM. 2006. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67-78.
    Wu Y, Zhang H, Dong Y, Park YM, Ip C. 2005. Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 65:9073-9.
    Xanthoudakis S, Nicholson DW. 2000. Heat-shock proteins as death determinants. Nat Cell Biol 2:E163-5.
    Xia W, Voellmy R. 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094-102.
    Yu F, Watts RN, Zhang XD, Borrow JM, Hersey P. 2006. Involvement of BH3-only proapoptotic proteins in mitochondrial-dependent Phenoxodiol-induced apoptosis of human melanoma cells. Anticancer Drugs 17:1151-61.
    Yu Z, Luo H, Fu W, Mattson MP. 1999. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302-14.
    Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, Gordan JD, Dai MS, Lu H, Simon MC, Diehl JA. 2006a. Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 281:30036-45.
    Zhang J, Jiang Y, Jia Z, Li Q, Gong W, Wang L, Wei D, Yao J, Fang S, Xie K. 2006b. Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 23:401-10.
    Zhao L, Ackerman SL. 2006. Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444-52.
    Zu K, Bihani T, Lin A, Park YM, Mori K, Ip C. 2006. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25:546-54.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE