簡易檢索 / 詳目顯示

研究生: 張欽
Chang, Chin
論文名稱: 線上社群的經營之個案研究
A case study of the management of an online community
指導教授: 王俊程
Wang, Jyun-Cheng
口試委員: 王貞雅
Wang, Chen-Ya
江成欣
Chiang, Cheng-hsin
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 115
中文關鍵詞: 網路社群社群經營口碑行銷社會網路分析
外文關鍵詞: Online community, Management of community, Word-of-mouth promotion, Social network analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於網際網路蓬勃發展與網路社群之普及,如何有效經營線上社群來為企業品牌加值與透過社群機制操作產生大量網路口碑,已成為企業所關注之焦點。本研究以個案探討的方式,深入研究華為手機社群,藉以探討下列兩個問題:
    • 如何提升社群成員參與度
    • 社群討論版塊有效經營手法
    本研究透過社會網路分析,提供另一種面向了解社群運作。研究發現,線上社群機制與社群成員參與程度相關,當獎勵機制所包含面向越多元,使用者之社群黏著度也隨之提高。另一方面,根據文獻得知網軍與影響力人士之影響力顯而易見,因此歸納出網軍/影響力人士指標與預測模型,並找出其如何幫助潛水者作出貢獻。而上述研究發現所做出之歸納,可以為管理者提出經營社群之建議。
    關鍵字: 網路社群、社群經營、口碑行銷、社會網路分析。


    In recent years, due to the rapid growth of the Internet and the rising popularity of online community, how to effectively manage an online community for corporations and how to generate high volume of eWOM through community mechanisms, has become the main focus of the firms. In this study, a comprehensive case study of Huawei Fans Club was used to learn how to improve member’s’ participation and how to efficiently manage online communities.
    By using social network analysis, this study provides a different aspect of online communities in terms of its operating method. It was observed that members’ participation is highly proportional to its diverse rewarding system as well as its royalty to the community. Moreover, according to the literature reviews, it is obvious to see how influential these cyberwarfares had become in the society. Therefore, these indicators and prediction models were made to help lurkers to contribute more in the community. The above-mentioned findings can advise the forum staff to manage the community.
    Key words: Online community; Management of community; Word-of-mouth promotion; Social network analysis

    線上社群的經營之個案研究 i ABSTRACT ii Chapter 1. Introduction 1 1.1 Background and Motivation 1 Chapter 2. Literature Review 5 2.1 Virtual Community 5 2.2 eWOM 7 2.3 Social network analysis 8 2.4 Operation of virtual community 10 2.4.1 Key successful factors of operation and social mechanism 10 2.4.2 Opinion leaders or influencers 11 2.4.3 Cyberwarfare 12 2.4.4 Lurkers 13 Chapter 3.Research Methodology 15 3.1 Data source & collection approach 15 3.2 Building Network Graph 17 3.3 Measurement 20 3.4 Research Method of the Issues 25 Chapter 4. Case Study---Huawei Fans Club 30 4.1 Introduction of Huawei Fans Club 30 4.2 How a “Huafan” participate into the community? 32 4.2.1The composition structure of “Huawei fan club” 32 4.2.2 Classification of the members in Huawei fans club 36 4.3 Arrangement and comparison of community mechanism 41 (Issue 1, Method 1) 41 4.3.1 Comparison of community mechanism 41 4.3.2 Community classification 49 4.3.3 Effect of mechanism for members' participation 50 4.4 Effective management practices of sections on community 54 4.4.1 How to manipulate the online volume to heave the discussion intensity? (Issue2, Method2) 60 4.4.2 Use influencers to heave the discussion intensity (Issue2, Method3) 69 4.4.3 Use cyberwarfares to liven up the discussion intensity in a section (Issue2, Method4) 80 4.5 The contribution of lurkers (Issue2, Method5) 90 4.5.1 The roles of lurkers are not important? 90 4.5.2 From lurkers to brokers 92 4.5.3 Conclusion 105 Chapter 5. Conclusions and contribution 108 5.1 Conclusion 108 5.2 Contribution 111 5.3 Limitation & Suggestion 111 Reference 113

    Armstrong, A., & Hagel, J. (2000). The real value of online communities. Knowledge and communities, 85-95.
    Baym, N. K. (1995). The emergence of community in computer-mediated communication.
    Bo, C., SIao,Chen. (2013). 線上購物網站網路社群經營關鍵成功因素之多重個案研究--以 Facebook 粉絲頁為例. 創新研發學刊, 9(1), 19-37.
    Chen. (2005). <網路學習社群中的潛水現象:一種被忽略的充分參與.pdf>.
    Ciou. (2012). 從意見領袖到影響者: 談網路時代的影響力行銷. 廣告學研究(37), 33-51.
    Cranefield, J., Yoong, P., & Huff, S. L. (2015). Rethinking Lurking: Invisible Leading and Following in a Knowledge Transfer Ecosystem. Journal of the Association for Information Systems, 16(4), 213-247.
    Cranefield, Y., Huff. (2015). <Rethinking-Lurking-Invisible-Leading-and-Following.pdf>. JAIS, 16(4).
    East, R., Hammond, K., & Lomax, W. (2008). Measuring the impact of positive and negative word of mouth on brand purchase probability. International Journal of Research in Marketing, 25(3), 215-224.
    Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: a community-based longitudinal study. The Lancet, 355(9212), 1315-1319.
    Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239.
    Gelb, B., & Johnson, M. (1995). Word-of-mouth communication: Causes and consequences. Marketing Health Services, 15(3), 54.
    Guo, D., & Chen, C. (2014). Detecting Non‐personal and Spam Users on Geo‐tagged Twitter Network. Transactions in GIS, 18(3), 370-384.
    Han, Y., Fang, B., & Jia, Y. (2014). Predicting the topic influence trends in social media with multiple models. Neurocomputing, 144, 463-470.
    Harrison-Walker, L. J. (2001). The measurement of word-of-mouth communication and an investigation of service quality and customer commitment as potential antecedents. Journal of service research, 4(1), 60-75.
    Hartley, J., McWilliam, K., Burgess, J., & Banks, J. (2008). The uses of multimedia: Three digital literacy case studies.
    Jamrozy, U., Backman, S. J., & Backman, K. F. (1996). Involvement and opinion leadership in tourism. Annals of Tourism Research, 23(4), 908-924.
    Jhan. (2010). 口碑行銷與網路社群經營模式分析-以 BIKEID 為例. 淡江大學國際商學碩士在職專班學位論文, 1-87.
    Kao. (2012). <从网络水军标题党差评师网络暴力网络诈骗谈网络环境优化.pdf>.
    Katz, E., & Lazarsfeld, P. F. (1955). Personal Influence, The part played by people in the flow of mass communications: Transaction Publishers.
    Kuo, L. (1999). 市場意見領袖特質與個人購物傾向對消費者選擇資訊與購買管道之影響--比較網際網路, 型錄, 與零售商店. 廣告學研究(13), 39-60.
    Leshed, G. (2005). Posters, lurkers, and in between: A multidimensional model of online community participation patterns. Poster presented at HCI International, Las Vegas, NV.
    Li, J. (2003). 社群創新模式與產業政策發展-使用者網路協作社群於軟體創新開發之運用.
    Lin. (1994). 大眾傳播理論典範發展. 社會教育學刊.
    Luarn, P., Yang, J.-C., & Chiu, Y.-P. (2014). The network effect on information dissemination on social network sites. Computers in Human Behavior, 37, 1-8.
    Marin, A., Wellman, B., Scott, P. J. P., & Carrington, P. P. (2011). Social network analysis: An introduction. Scott J, Carrington PJ, editors. The SAGE Handbook of Social Network Analysis, 11-25.
    McMillan, D. W., & Chavis, D. M. (1986). Sense of community: A definition and theory. Journal of community psychology, 14(1), 6-23.
    Nonnecke, B., Preece, J., Andrews, D., & Voutour, R. (2004). Online lurkers tell why. AMCIS 2004 Proceedings, 321.
    O'Really, T. (2009). Design Patterns and Business Models for the Next Generation of Software. URL: http://oreilly. com/web2/archive/what-is-web-20. html (01.12. 2013.).
    Rheingold, H. (1993). The virtual community: Homesteading on the electronic frontier: MIT press.
    Scott, J. (2012). Social network analysis: Sage.
    Sun. (1998). 台灣網際網路發展與問題初探. 廣播與電視 (政大), 3(4), 1-20.
    Syue, C. (2010). <BBS中的舆论领袖影响力传播模型研究-新闻大学.pdf>. Quartely.
    Valente, T. W., & Pumpuang, P. (2007). Identifying opinion leaders to promote behavior change. Health Education & Behavior.
    Wan, L. (2007). 虛擬社群形成之意義及其衡量指標之探討: 以網路書店為例. 資訊社會研究, 13, 295-317.
    Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8): Cambridge university press.
    Wilson, T. P. (1982). Relational networks: An extension of sociometric concepts. Social Networks, 4(2), 105-116.
    Yin, R. K. (2013). Case study research: Design and methods: Sage publications.
    Yuan, H. (2001). 虛擬社群經營模式之探討—以優仕綱為例綱路與虛擬社群. 傳播與管理研究, 1(1), 45-71.
    Zemljič, B., & Hlebec, V. (2005). Reliability of measures of centrality and prominence. Social Networks, 27(1), 73-88.
    Zhang, Z., Li, X., & Chen, Y. (2012). Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews. ACM Transactions on Management Information Systems (TMIS), 3(1), 5.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE