研究生: |
洪安第 Hung, An-Ti |
---|---|
論文名稱: |
邏輯定序引導串聯質譜法應用於乳清蛋白中N-聚醣的結構鑑定 Logically Derived Sequence Tandem Mass Spectrometry for Structural Determination of N-Glycans in Whey Protein |
指導教授: |
倪其焜
Ni, Chi-Kung 林俊成 Lin, Chun-cheng |
口試委員: |
吳世雄
Wu, Shih-Hsiung 洪上程 Hung, Shang-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | N-聚醣 、高效能液相層析法 、質譜分析 、碰撞誘導解離 |
外文關鍵詞: | N-glycan, high-performance liquid chromatography, mass spectrometry, collision-induced dissociation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
N-聚醣(N-glycan)具有多種生物學作用並且有時參與病原體相互作用,若想更進一步了解 N-聚醣在生物系統中扮演的角色,鑑定其結構是非常重要的。N-聚醣由數個單醣(Monosaccharides)組成,單醣與單醣間,以醣苷鍵(Glycosidic Bond)鍵結,形成高度複雜的結構。
到目前為止,已經發展各種不同解醣結構的方法,但仍然沒有一個方法能快速且準確的解出每一個醣的結構。因此,我們開發了一種新的解醣方法,邏輯定序引導串聯質譜法(logically derived sequence, LODES),利用高效能液相層析法(HighPerformance Liquid Chromatography, HPLC)及質譜分析法(Mass Spectrometry)建立了雙醣的質譜資料庫,並利用醣解離機制的原理,建立解離順序,再藉由碰撞誘導解離(Collision-Induced Dissociation, CID)將寡醣(Oligosaccharides)分解成數個雙醣(Disaccharides)碎片,並將這些雙醣碎片的質譜(Mass Spectra)分別與我們建立的雙醣質譜的資料庫進行比對,藉此快速的鑑定醣的結構,此研究將會利用邏輯定序引導串聯質譜法去鑑定在乳清蛋白中分離出的 N-聚醣。
N-glycans have multiple biological effects and sometimes participate in pathogen interactions. If we want to know more about the role of N-glycans in biological systems, it is very important to identify its structure.
By now, many methods have been proposed to identify the structure of oligosaccharides. It is still challenging for these methods to resolve the structures in detail. Therefore, we have developed a new method, logically derived sequence ( LODES). This method was based on the comparison of the disaccharide database with the
spectra of disaccharides residues dissociated from oligosaccharide by collision-induced dissociation (CID).
The disaccharides database was built using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS") and the spectra of disaccharide residues produced from CID of oligosaccharides were obtained by ESI-MS".
In this study, I used LODES to identify the structures of the N-Glycans in whey protein.
1. Bertozzi, C. R., & Kiessling, L. L. (2001). Chemical glycobiology. Science, 291(5512), 2357-2364.
2. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology [Internet]. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015–2017. PMID: 27010055.
3. Domon, B., & Costello, C. E. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal, 5(4), 397-409.
4. Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.
5. Ofek, I.; Sharon, N. Adhesins as lectins: Specificity and role in infection. Curr. Top. Microbiol. Immunuol. 1990, 151, 91−113.
6. Ashorn, P.; Vilja, P.; Shorn, R.; Rohn, K. Lectin binding affinities of human milk fat globule (HMFG) membrane antigens. Mol.Immunol. 1986, 23 (3), 221−230
7. Duus, J. Ø., Gotfredsen, C. H., & Bock, K. (2000). Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chemical Reviews, 100(12), 4589-4614.
8. Cocinero, E. J., Carcabal, P., Vaden, T. D., Simons, J. P., & Davis, B. G. (2011). Sensing the anomeric effect in a solvent-free environment. Nature, 469(7328), 76-79.
9. Terol, A., Paredes, E., Maestre, S. E., Prats, S., & Todolí, J. L. (2012). Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection. Journal of separation science, 35(8), 929-936.
10. Zaia, J. (2004). Mass spectrometry of oligosaccharides. Mass spectrometry reviews, 23(3), 161-227.
11. Hillenkamp, F., Karas, M., Beavis, R. C., & Chait, B. T. (1991). Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical chemistry, 63(24), 1193A-1203A.
12. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64-71.
13. Stephens, E., Maslen, S. L., Green, L. G., & Williams, D. H. (2004). Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Analytical chemistry, 76(8), 2343-2354.
14. Li, D. T., & Her, G. R. (1998). Structural analysis of chromophore‐labeled disaccharides and oligosaccharides by electrospray ionization mass spectrometry and high‐performance liquid chromatography/electrospray ionization mass spectrometry. Journal of mass spectrometry, 33(7), 644-652.
15. Viseux, N., de Hoffmann, E., & Domon, B. (1998). Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Analytical chemistry, 70(23), 4951-4959.
16. Park, Y., & Lebrilla, C. B. (2005). Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. Mass spectrometry reviews, 24(2), 232-264.
17. Wang, C., Yang, M., Gao, X., Li, C., Zou, Z., Han, J., ... & Wang, Z. (2018). The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconjugate journal, 35(4), 411-420.
18. Tsai, S. T., Chen, J. L., & Ni, C. K. (2017). Does low‐energy collision‐induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end?. Rapid Communications in Mass Spectrometry, 31(21), 1835-1844.
19. Chen, J. L., Nguan, H. S., Hsu, P. J., Tsai, S. T., Liew, C. Y., Kuo, J. L., ... & Ni, C. K. (2017). Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics, 19(23), 15454-15462.
20. Huang, S. P., Hsu, H. C., Liew, C. Y., Tsai, S. T., & Ni, C. K. (2020). Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconjugate journal, 1-13.
21. Ni, C. K., Hsu, H. C., Liew, C. Y., Huang, S. P., & Tsai, S. T. (2020). Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination.
22. Hsu, H. C., Huang, S. P., Liew, C. Y., Tsai, S. T., & Ni, C. K. (2019). De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Analytical and bioanalytical chemistry, 411(15), 3241-3255.
23. Sriwilaijaroen, N., Kondo, S., Yagi, H., Hiramatsu, H., Nakakita, S. I., Yamada, K., ... & Suzuki, Y. (2012). Bovine milk whey for preparation of natural N-glycans: structural and quantitative analysis. Open Glycoscience, 5(1).
24. Nwosu, C. C., Aldredge, D. L., Lee, H., Lerno, L. A., Zivkovic, A. M., German, J. B., & Lebrilla, C. B. (2012). Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. Journal of proteome research, 11(5), 2912-2924.
25. van Leeuwen, S. S., Schoemaker, R. J., Timmer, C. J., Kamerling, J. P., & Dijkhuizen, L. (2012). N-and O-glycosylation of a commercial bovine whey protein product. Journal of agricultural and food chemistry, 60(51), 12553-12564.
26. Dong, X., Zhou, S., & Mechref, Y. (2016). LC‐MS/MS analysis of permethylated free oligosaccharides and N‐glycans derived from human, bovine, and goat milk samples. Electrophoresis, 37(11), 1532-1548.
27. Jia, Y., Lu, Y., Wang, X., Yang, Y., Zou, M., Liu, J., ... & Wang, Z. (2021). Mass spectrometry based quantitative and qualitative analyses reveal N-glycan changes of bovine lactoferrin at different stages of lactation. LWT, 147, 111626.