簡易檢索 / 詳目顯示

研究生: 秦威
Chin, Wei
論文名稱: 奈米碳管-高分子複合材之無線電頻率電磁波吸收研究
Electromagnetic absorption by carbon nanotube-polymer composites at radiofrequency
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 鍾仁傑
黃淑娟
戴念華
闕郁倫
徐文光
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 51
中文關鍵詞: 奈米碳管電磁波吸
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this work, arrays of aligned CNTs are grown and subsequently concreted with parylene to form composites. Such a system made from CNT and polymer displays a linear dichroism in response to incident RF radiation and is supported by differentiated absorbance between longitudinal and transverse directions. For example, the absorption reaches 99% as electric field oscillates along nanotubes and drops below 5% in normal to tube axis; the estimated absorption being 30-60% for randomly arranged CNTs. Origin of enhanced absorptivity at longitudinal direction is analyzed and found related to field induced intra-band transitions within sp2 hybridized orbits. This is supported by ab-initio calculations.


    此篇論文的內容在探討利用有序排列的多壁奈米碳管(aligned CNTs) 和聚乙烯醇(PVA)所製作的複合材料進行無線電頻率(radiofrequency)範圍內的電磁波吸收實驗。在此實驗中發現,當多壁奈米碳管的排列方向(碳管的長軸方向)相對於電磁波電場振盪方向改變時,複合材吸收電磁波的能力也會隨著改變。當碳管的排列方向和電場振盪方向平行時,複合材電磁波吸收率(absorption)可達99%,但當碳管的排列方向和電場振盪方向垂直時,複合材電磁波吸收率僅為5%,如果使用多壁奈米碳管散亂分散於聚乙烯醇的複合材進行相同的實驗,其電磁波吸收率為30-60%。於此實驗所觀察到的電磁波吸收異向性是由於奈米碳管上未成對電子在電場的作用下於sp2 混成軌域內進行能量躍遷(intra-band transitions)所造成的現象。此現象可以經由ab-initio 理論計算而得到證明。

    Electromagnetic absorption by carbon nanotube-polymer composites at radiofrequency Abstract……………………………………………………………….……………....I Abstract (Chinese)……………………………………………………….…………..III Acknowledgement……………………………………………………….……….….IV Contents………………………………………………………………………….......V Figure Captions……………………………………………………………….……VIII Chapter 1 Introduction………………………………………………………………1 Section 1-1-1 Structure of carbon nanotubes…………………………………………1 Section 1-1-2 Electronic properties of carbon nanotubes…………………………….5 Section 1-1-3 Mechanical properties of carbon nanotubes…………………………...7 Section 1-1-4 Defects in carbon nanotube…………………………………………….9 Section 1-2 Electromagnetic interference (EMI) shielding mechanism……………..12 Section 1-2-1 Introduction of electromagnetic wave………………………………...13 Section 1-2-1-1 Electromagnetic waves in Vacuum…………………………………14 Section 1-2-1-2 Electromagnetic waves in matter…………………………………...16 Section 1-2-1-3 Reflections of electromagnetic wave at planar boundary (normal incidence) ……………………………………………………………………….……18 Section 1-2-2 Electromagnetic interference shielding effectiveness (SE)…………23 Chapter 2 Experimental……………………………………………………………25 Section 2-1 Growth of aligned multi-walled CNTs (MWCNTs)…………………….25 Section 2-2 Production of MWCNTs / PVA composite films……………………….26 Section 2-3 Set up for electromagnetic interference shielding experiment…………..26 Section 2-4 Instrumental characterizations……………………………………..……27 Chapter 3 ……………………………………………………………………………28 Section 3-1 Introduction……………………………………………………………...28 Section 3-2 Results and discussion…………………………………………………..29 Section 3-2-1 Electromagnetic interference shielding……………………………….29 Section 3-2-2 Permittivity and Permeability Measurement………………………….32 Section 3-2-3 Literature review of Permittivity of material and Vacancy Defect in Carbon Nanotube……………………………………………………………………..35 Section 3-2-3-1 Dielectric Dispersion………………………………………………..35 Section 3-2-3-2 Nature of Vacancy in Carbon Nanotube……………………………37 Section 3-2-4 Simulation of Electronic polarization of Vacancy Defect in Carbon Nanotube…………………………………………………………………..….………40 Chapter 4 Conclusions……………………………………………………….…….44 Reference……………………………………………………………………………45

    [1] Iijima S, Nature (London) 354, 56 (1991)
    [2] Treacy MMJ, Ebbesen TW, Gibson JM, Nature 381, 678 (1996)
    [3] Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA,
    Forro L, Phys. Rev. Lett. 82(5), 944 (1999)
    [4] Nikolaev P, Lou L, Kim SG, Tomanek D, Nordlander P, Colbert DT, Smally RE,
    Science 269, 1550 (1995)
    [5] Hamada N, Swada SI, Oshiyama A, Phys. Rev. Lett. 68, 1579 (1992)
    [6] Calvert P, Nature 357, 365 (1992)
    [7] Yang Y, Gupta MC, Nano Lett. 5(11), 2131 (2006)
    [8] Li N, Hung Y, Du F, He B, Lin X, Gao HJ, Ma YF, Li FF, Chen YS, Eklund PC,
    Nano Lett. 6(6), 1141 (2006)
    [9] De Heer WA, Chatelaine A, Ugarte D, Science 270, 1179 (1995)
    [10] Yakobson BI, Smallry RE, Am. Sci. 85, 324 (1997)
    [11] Dresselhaus MS, Dresselhaus G, Saito R, Carbon 33(7), 883 (1995)
    [12] Ebbesen TW, Ajayan PM, Nature 358, 220 (1992)
    [13] Ajayan PM, Iijima S, Nature 358, 23 (1992)
    [14] Charlier JC, Michenaud JP, Phy. Rev. Lett. 70, 1858 (1993)
    [15] Kane CL, Mele EJ, Phy. Rev. Lett. 78, 1932 (1997)
    [16] Mintmire JW, Dunlap BI, White CT, Phy. Rev. Lett. 68(5), 631(1992)
    [17] Saito R, Fujita M, Dresselhaus G, Dresselhaus MS, Appl. Phys. Lett. 60, 2204 (1992)
    [18] McEuen PL, Bockrath M, Cobden DH, Yoon YG, Louie SG, Phys. Rev. Lett. 83(24),
    5098 (1999)
    [19] Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML, Phys. Rev. Lett. 76, 971
    (1996)
    [20] Lu JP, Phys. Rev. Lett. 79(7), 1297 (1997)
    [21]Hernandez E, Goze C, Bernier P, Rubio A, Phys. Rev. Lett. 80(20),4502 (1998)
    [22] Yakobson BI, Brabec CI, Bernholc, Phys. Rev. Lett. 76(14), 2511 (1996)
    [23] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS, Science 287,637 (2000)
    [24] Ozaki T, Iwasa Y, Mitani T, Phys. Rev. Lett. 84(8), 1712 (2000)
    [25] Garg A, Han J, Sinnott SB, Phys. Rev. Lett. 81(11), 2260 (1998)
    [26] Sricastava D, Menon M, Cho K, Phys. Rev. Lett. 83(15), 2973(1999)
    [27] Iiliman S, Brabec C, Maiti A, Bernholc J, J. Chem. Phys. 104, 2089 (1996)
    [28] Poncharal P, Wang ZL, Ugarte D, De Heer WA, Science 283, 1513 (1999)
    [29] Chopra NG, Benedict LX, Crespi VH, Cohen ML, Loui SG, Cohen ML, Zettl A,
    Nature 377, 135 (1995)
    [30] Crespi VH, Cohen ML, Rubio A, Phys. Rev. Lett. 79, 2093(1997)
    [31] Charlier JC, Ebbesen TW, Lambin P, Phys. Rev. B 53, 11108 (1996)
    [32]Hansson A, Paulsson M, Stafstrom S, Phys. Rev. B62, 7639 (2000)
    [33] Choi HJ et al., Phys. Rev. Lett. 84, 2917 (2000); Chio L et al., Phy. Rev. B 54, 2600
    (1996)
    [34] Terrones M et al., Science 288, 1226 (2000)
    [35] Maltezopoulos T, Kubetzka A, Morgenstern M, Wiesendanger R, Lemay SG,
    Dekker C, App. Phys. Lett. 83, 1011 (2003)
    [36] Bockrath M, Liang W, Bozovic D, Hafner JH, Lieber CM, Tinkham M, Park H,
    Science 291, 283 (2001)
    [37] Krasheninnikov AV, Nordlund K, Lehtinen PO, Foster AS, Ayuela A, Nieminen
    RM, Phys. Rev. B 69, 073402 (2004)
    [38] Krasheninnikov AV, Nordlund K, Keinonen J, Phys. Rev. B 65, 165423 (2002)
    [39] Hashimoto A, Suenaga K, Gloter A, Trita K, Iijima S, Nature 430, 870 (2004)
    [40] Ajayan PM, Ravikumar V, Charlier JC, Phys. Rev. Lett. 81, 1437 (1998)
    [41] Zhu Y et al., Appl. Surf. Sci. 137, 83 (1999)
    [42] Krasheninnkov AV et al., Phys. Rev. B 63, 245405 (2001); Krasheninnkov AV,
    Norlund K, J. Vac. Sci. Technol. B 20, 728 (2002); Krasheninnkov AV, Norlund K,
    Surf. Sci. 454, 519 (2000)
    [43] Orellana W, Fuentealba B, Sur. Sci. 18, 4305 (2006)
    [44] Das NC, Chaki TK, Khastgir D, Chakraborty A, J. Appl. Polym. Sci.80,1601 (2001)
    [45] Griffiths DJ, Introduction to Electrodynamics 3rd edition (Prentice Hall)
    [46] Vinoy KJ, Jha RM, Radar Absorbing Materials from Theory to Design and
    Characterizaiton ( Kluwer Academic Publishers, London)
    [47] Kim HM, Kim K, Lee CY, Joo J, Appl. Phys. Lett. 84,589 (2003)
    [48] Mohammed H, Al- Saleh, Sundaraj U, Carbon 47, 1738 (2009)
    [49] Nicolson AM, Ross GF, IEEE Trans Instrum Meas IM-19, 377 (1970)
    [50] Courtney CC, IEEE Trans Microwave Theory Tech 46, 517 (1998)
    [51] Ren L, Pint CL, Booshehri LG, Rice WD, Wang XF, Hilton DJ, et al., Nano Lett. 9,
    2610 (2009)
    [52] Najafi E, Cruz DH, Obst M, Hitchcock AP, Douhard B, Pireaux JJ, et al., Small 4,
    2279 (2008)
    [53] Chen YC, Li CC, Lee YF, Chin W, Lin YH, Lu SY, et al., J Mater Chem 18, 4616
    (2008)
    [54]Chauvet O, Baumgartner G, Carrard M, Bacsa W, Ugarte D, de Heer WA, et al.,
    Phys Rev B 21, 13996 (1996)
    [55] Kuo HF, Hsu CT, Lien DH, Syue SH, Kao YS, Li CC, et al., Appl Phys Lett 93(22),
    223111 (2008)
    [56] Li HC, Lu SY, Syue SH, Hsu WK, Chan SC, Appl Phys Lett 93,033104 (2008)
    [57]Li N, Huang Y, Du F, He X, Lin X, Gao H, et al., Nano Lett 6, 1141 (2006)
    [58] Kim HM, Kim K, Lee CY, Joo J, Appl Phys Lett 84, 589 (2007)
    [59] Tohji K, Takahashi H, Shinoka Y, Shimizu N, Jeyadevan B, Matsuoka I, et al.,
    Nature 383, 679 (1996)
    [60] Takayoshi H, Shigeru H, Masato T, Shigeru U, Nature 381,772 (1996)
    [61] Lu AJ, Pan B, Phys. Rev. Lett. 92, 105504 (2004)
    [62] Rossato J, Baierle RJ, Fazzio A, Mota R, Nano Lett. 5, 197 (2005)
    [63] Kotosonov AS, Kuvshinnikov SV, Phys Lett A 229, 377 (1997)
    [64] Reyes SA, Struck A, Eggert S, Phys Rev B 80, 075115 (2009)
    [65] Zhang HJ, Guo HJ, Deng XY, Gu P, Chen ZW, Jiao Z, Nanotechnology 21, 085706
    (2010)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE