簡易檢索 / 詳目顯示

研究生: 林鴻馨
Lin, Hung-Hsin
論文名稱: Measurement of the Linewidth Enhancement Factor of Quantum Dot Lasers by Four-Wave Mixing Analysis
指導教授: 林凡異
Lin, Fan-Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 41
中文關鍵詞: 量子點半導體雷射四波混頻
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The linewidth enhancement factor (α-factor) of semiconductor quantum dot laser
    has been widely investigated and measured in recent years. The pubilished methods of
    measuring the α-factor are focus on the α-factor only, ignoring other intrinsic parameters
    of semiconductor lasers. These intrinsic parameters of lasers are much dependent on
    determine the characteristics of the laser nonlinear dynamic. Therefore, we apply the
    four-wave mixing analysis on quantum dot lasers both numerically and experimentally.
    Through the four-wave mixing analysis, we can not only obtain the α-factor but also
    other intrinsic parameters.
    By analyzing the four-wave mixing state of quantum dot lasers, we derive and obtain
    the relation between optical spectra of the regenerated signal versus detuning and power
    spectra of four-wave mixing state versus dteuning, respectively. Fitting the experimental
    result with those derived from the relations, the α-factor and intrinsic parameters can be
    obtained.
    From the experimental result, it is found that the appearance of the optical spectra
    of quantum dot lasers is different from that of quantum well lasers . Through numerical
    analyzing, the difference is found resulting from the larger value of the differential gain
    and carrier decay rate. The α-factor extracted from the fitting result is also compared to
    that obtained by injection locking technique, which show similar values. Therefore, using the four-wave mixing analysis to measure the linewidth enhancement factor of quantum dot lasers is shown to be reliable.


    1 Introduction 7 2 Method and Model 10 2.1 Optical Injection System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Four-WaveMixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 QuantumWell (QW) Lasers . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 QuantumDot (QD) Lasers . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Injection Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Experimental Setup 22 4 Result and Discussion 24 4.1 Measuring the α- Factor of QuantumWell Lasers . . . . . . . . . . . . . 24 4.1.1 Experimental Result of the Four-WaveMixing . . . . . . . . . . . 24 4.1.2 Experimental Result of the Injection Locking . . . . . . . . . . . . 26 4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Measuring the α- Factor of QuantumDot Lasers . . . . . . . . . . . . . . 27 4.2.1 Experimental Result of the Four-WaveMixing . . . . . . . . . . . 27 4.2.2 Experimental Result of the Injection Locking . . . . . . . . . . . . 33 5 Conclusion 37 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    [1] C. H. Henry, ”Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum
    Electronics, vol. QN1-8, no. 2, pp. 259-264, 1982.
    [2] S. Melnik, G. Huyet, and A. V. Usko, ”The Linewidth Enhancement Factor α of
    Quantum Dot Semiconductor Lasers,” Opt. Exp., vol. 14, no. 7, pp. 2950-2955,
    2006.
    [3] M. Osi ´N ski, and J. Buus ”Linewidth Broadening Factor in Semiconductor Lasers -
    An Overview,” IEEE J. Quantum Electronics, vol. QE-23, no. 1, pp. 9-29, 1987.
    [4] H. Diwu, and B. Arda, ”Quantum Dot Lasers,” Quantum Dot Lasers, ECE 580-Term
    Project
    [5] D. O’Brien, S. P. Hegarty, and A. V. Usko, ”Sensitivity of Quantum Dot Semiconductor
    Lasers to Optical Feedback,” Opt. Lett., vol. 29, no. 10, pp. 1072-1074,
    2004.
    [6] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M.
    Ustinov, ”InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Selected Topics Quantum
    Electronics, vol. 3, no. 2, pp. 196-205, 1997.
    [7] B. Dagens, A. Markus, J. X. Chen, J. G. Provost, D. Make, O. Le Gouezigou, J. Landreau,
    A. Fiore, and B. Thedrez, ”Gain Linewidth Enhancement Factor and Purely
    Frequency Modulated Emission from Quantum Dot Lasers,” Electronics Letters, vol.
    41, no. 6, 20057956, 2005.
    [8] F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, ”Gain Compression and
    Above-Threshold Linewidth Enhancement Factor in 1.3 μm InAs-GaAs Quantum
    Dot Lasers,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 946-951, 2008.
    [9] D. Y. Cong, A. MArtinez, K. Merghem, G. Moreau, A. Lemaˆitre, J. G. Provost,O. Le
    Gouezigou, M. Fischer, I. Krestnikov, A. R. Kovsh, and A. Ramdane, ”Optimisation
    of α-Factor for Quantum Dot InAs/GaAs Fabry-Perot Lasers Emitting at 1.3μm,”
    Electron Letters, vol. 43, no. 4, 20073633, 2007.
    [10] A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, ”Comparison of the Carrier
    Induced Refractive Index, Gain, and Linewidth Enhancement Factor in Quantum
    Dot and Quamtum Well Lasers,” Appl. Phys. Lett., vol. 84, no. 7, pp. 1058-1060,
    2004.
    [11] S. K. Hwang, and D. H. Liang, ”Effects of Linewidth Enhancement Factor on Period-
    One Oscillations of Optically Injected Semiconductor Lasers,” Appl. Phys. Lett., vol.
    89, 061120, 2006.
    [12] S. Gerhard, C. Schilling, F. Gerschutz, M. Fischer, J. Koeth, I. Krestnikov, A.
    Kovsh, M. Kamp, S. Hofling, and A. Forchel, ”Frequency-Dependent Linewidth
    Enhancement Factor of Quantum-Dot Lasers,” IEEE Phot. Tech. Lett., vol. 20, no.
    20, pp. 1736-1738, 2008.
    [13] T. Fordell, and˚A. M. Lindberg ”Experiments on the Linewidth- Enhancement Factor
    of a Vertical-Cavity Surface-Emitting Laser,” IEEE J. Quantum Electron, vol. 43,
    no. 1, pp. 6-15, 2007.
    [14] R. Hui, A. Mecozzi, A. D’Ottavi, and P. Spano, ”Novel Measurement Technique of
    α Factor in DFB Semiconductor Lasers by Injection Locking,” Electron Letters, vol.
    26, no. 14, pp. 997-998, 1990.
    [15] I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, ”Locking Bandwidth and Relaxation
    Oscillations of an Injection-Locking Semiconductor Laser,” IEEE J. Quantum
    Electron., vol. 24, no. 2, pp. 148-154, 1988.
    [16] K. Iiyama, K. I. Hayashi, and Y. Ida, ”Simple Method for Measuring the Linewidth
    Enhancement Factor of Semiconductor Lasers by Optical Injection Locking,” Opt.
    Lett., vol. 17, no. 16, pp. 1128-1130, 1992.
    [17] S. K. Hwang, J. M. Liu,and J. K. White, ”Characteristics of Period-One Oscillations
    in Semiconductor Lasers Subject to Optical Injection,” IEEE J. Selected Topics
    Quantum Electronics, vol. 10, no. 5, pp. 974-981, 2004.
    [18] S. K. Hwang, and J. M. Liu, ”Dynamical Characteristics of an Optically Injected
    Semiconductor Lasers,” Opt. Commun., vol. 183, pp. 195-205, 2000.
    [19] J. M. Liu, and T. B. Simpson, ”Four-wave mixing and optical modulation in a
    semiconductor laser,” IEEE J. Quantum Electron., vol. 30, pp. 957-965, 1994.
    [20] H. Nakajima, and R. Frey, ”Intracavity Nearly Degenerate Four-Wave Mixing in a
    GaAlAs Semiconductor Laser,” Appl. Phys. Lett., vol. 47, pp. 769-771, 1985.
    [21] D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melinik, M. Hartnett, G. Greene,
    J. G. McInerney, D. Rachinskii, and G. Huyet, ”Excitability in a Quantum Dot
    Semiconductor Laser with Optical Injection,” Phys. Rev. Let., vol. 98, 153903, 2007.
    [22] M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo,
    and Y. Nakata, ”Modeling Room-Temperature Lasing Spectra of 1.3 μm Self-
    Assembled InAs/GaAs Quantum-Dot Lasers: Homogeneous Broadening of Optical
    Gain under Current Injection,” J. Appl. Phys. Lett., vol. 97, 043523, 2005.
    [23] M. Gioannini, A. Sevega, and I. Montrosset, ”Simulation of Differential Gain and
    Linweidth Enhancement Factor of Quantum Dot Lasers,” Optical and Quantum Electronics,
    vol. 38, pp. 381-394, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE