研究生: |
周日成 Benchaphanthawee, Wachara |
---|---|
論文名稱: |
有機介質控制的可逆-去活化自 由基聚合反應所合成的嵌段共聚物及其在生物醫學的應用 Synthesis and Biomedical Applications of Block Copolymers Obtained from Reversible-Deactivation Radical Polymerization Controlled by Organic Mediators |
指導教授: |
黃郁文
Huang, Yu-Wen |
口試委員: |
陳信龍
Chen, Hsin-Lung 彭之皓 Peng, Chi-How 陳貴通 Tan, Kui-Thong 王潔 Wang, Jane 吳彥谷 Wu, Yen-Ku |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 222 |
中文關鍵詞: | 聚合物 |
外文關鍵詞: | polymer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可逆-失活自由基聚合反應(RDRP)是高分子合成中最普遍運用的技術之一,可用於合成乙烯基聚合物和嵌段共聚物,這類聚合物則廣泛應用於生醫領域。而此方法最大的限制,在於需要使用有毒的金屬錯合物作為調控劑。本研究分為三個章節,前兩個章節探討純有機調控劑,特別是沙洛芬(salophen,第一章)和環庚三烯酮(tropone,第二章)的衍生物,用於醋酸乙烯酯(VAc)、N-乙烯基吡咯烷酮(NVP)和甲基丙烯酸甲酯(MA)等乙烯基單體的自由基聚合中,分子量隨單體轉化率線性增長,並且成功合成嵌段共聚物。研究反應機制的結果顯示,這些有機調控劑會與自由基形成可逆 C–C 鍵並產生休眠物種,透過自由基與休眠物種之間的動態平衡實現調控聚合的能力。第三章則進一步探討嵌段共聚物在可降解水凝膠於生醫領域的應用,此水凝膠展現出可控的溶脹性、可控的降解性、高含水量及良好的皮膚附著性,顯示出其在生醫領域的潛在應用價值。
A reversible-deactivation radical polymerization (RDRP) is a powerful technique in producing vinyl polymers and block copolymers, which are widely used in biomedical applications. Howev-er, the significant limitation in this method is utilization of toxic metal complexes in mediating RDRPs. This research was divided into three parts, including the investigation of new pure or-ganic mediators, specifically derivatives of salophen (Chapter 1) and tropone (Chapter 2), in con-trolling radical polymerizations of vinyl monomers, such as vinyl acetate (VAc), N-vinylpyrrolidone (NVP) and methyl acrylate (MA) with linear molecular weight growth and ena-bling block copolymer formation. The mechanistic studies revealed that organo-mediators form the dormant species through reversible C–C bond. The dynamic equilibrium between active spe-cies and dormant species led to controlled polymerization. The biomedical application of block copolymers was investigated by the study of degradable hydrogels in Chapter 3. The gels were fabricated, and their performances were demonstrated by tunable swelling capacity, high water content, skin adhesion and controllable degradation.
Chapter 1
1. Grubbs, R. B., Nitroxide-mediated radical polymerization: limitations and versatility, Polym. Rev., 2011, 51 (2), 104-137.
2. Sciannamea, V.; Jérôme, R.; Detrembleur, C., In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization, Chem. Rev., 2008, 108 (3), 1104-1126.
3. Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B., Nitroxide-mediated polymerization, Prog. Polym. Sci., 2013, 38 (1), 63-235.
4. Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization, Chem. Rev., 2001, 101 (9), 2921-2990..
5. Coessens, V.; Pintauer, T.; Matyjaszewski, K., Functional polymers by atom transfer radical polymerization, Prog. Polym. Sci., 2001, 26 (3), 337-377.
6. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc., 1995, 117 (20), 5614-5615.
7. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process, Aust. J. Chem., 2005, 58 (6), 379-410.
8. D'Agosto, F.; Rieger, J.; Lansalot, M., RAFT-Mediated polymerization-induced self-assembly, Angew. Chem. Int. Ed., 2020, 59 (22), 8368-8392.
9. H Hill, M. R.; Carmean, R. N.; Sumerlin, B. S., Expanding the scope of RAFT polymerization: recent advances and new horizons, Macromolecules, 2015, 48 (16), 5459-5469.
10. Moad, G.; Rizzardo, E.; Thang, S. H., Radical addition–fragmentation chemistry in polymer synthesis, Polymer, 2008, 49 (5), 1079-1131.
11. Yamago, S., Development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions, J. Polym. Sci., 2006, 44 (1), 1-12.
12. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Use of iodocompounds in radical polymerization, Chem. Rev., 2006, 106 (9), 3936-3962.
13. Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M., Nickel-mediated living radical polymerization of methyl methacrylate, Macromolecules, 1997, 30 (8), 2249-2253.
14. Li, P.; Qiu, K.-Y., Nickel-mediated living radical polymerization of styrene in conjunction with tetraethylthiuram disulfide, Polymer, 2002, 43 (22), 5873-5877.
15. dens, I.; Degée, P.; Haddleton, D. M.; Dubois, P., Reactivity ratios in conventional and nickel-mediated radical copolymerization of methyl methacrylate and functionalized methacrylate monomers, Eur. Polym. J., 2005, 41 (10), 2255-2263.
16. Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C., Overview of cobalt-mediated radical polymerization: Roots, state of the art and future prospects. Progress in Polymer Science 2009, 34 (3), 211-239.
17. Debuigne, A.; Caille, J.-R.; Jérôme, R., Highly efficient cobalt-mediated radical polymerization of vinyl acetate, Angew. Chem. Int. Ed., 2005, 44 (7), 1101-1104.
18. Benchaphanthawee, W.; Peng, C.-H., Organo-cobalt complexes in reversible-deactivation radical polymerization, Chem. Rec., 2021, 21 (12), 3628-3647.
19. Stoffelbach, F.; Haddleton, D. M.; Poli, R., Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands, Eur. Polym. J., 2003, 39 (11), 2099-2105.
20. Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli, R.; Matyjaszewski, K., Origin of activity in Cu-, Ru-, and Os-mediated radical polymerization, Macromolecules, 2007, 40 (24), 8576-8585.
21. Poli, R.; Allan, L. E. N.; Shaver, M. P., Iron-mediated reversible deactivation controlled radical polymerization, Prog. Polym. Sci., 2014, 39 (10), 1827-1845.
22. Teodorescu, M.; Gaynor, S. G.; Matyjaszewski, K., Halide anions as ligands in iron-mediated atom transfer radical polymerization, Macromolecules, 2000, 33 (7), 2335-2339.
23. Rossi, B.; Prosperini, S.; Pastori, N.; Clerici, A.; Punta, C., New advances in titanium-mediated free radical reactions, Molecules, 2012, 17 (12), 14700-14732.
24. Asandei, A. D.; Moran, I. W.; Saha, G.; Chen, Y., Titanium-mediated living radical styrene polymerizations. VI. Cp2TiCl-catalyzed initiation by epoxide radical ring opening: effect of the reducing agents, temperature, and titanium/epoxide and titanium/zinc ratios, J. Polym. Sci. 2006, 44 (7), 2156-2165.
25. Champouret, Y.; MacLeod, K. C.; Smith, K. M.; Patrick, B. O.; Poli, R., Controlled radical polymerization of vinyl acetate with cyclopentadienyl chromium β-diketiminate complexes: ATRP vs OMRP, Organometallics, 2010, 29 (14), 3125-3132.
26. Champouret, Y.; MacLeod, K. C.; Baisch, U.; Patrick, B. O.; Smith, K. M.; Poli, R., Cyclopentadienyl chromium β-diketiminate complexes: initiators, ligand steric effects, and deactivation processes in the controlled radical polymerization of vinyl acetate, Organometallics, 2010, 29 (1), 167-176.
27. Shaver, M. P.; Hanhan, M. E.; Jones, M. R., Controlled radical polymerization of vinyl acetate mediated by a vanadium complex, Chem. Commun. 2010, 46 (12), 2127-2129.
28. Perry, M. R.; Allan, L. E. N.; Decken, A.; Shaver, M. P., Organometallic mediated radical polymerization of vinyl acetate using bis(imino)pyridine vanadium trichloride complexes, Dalton Trans., 2013, 42 (25), 9157-9165.
29. Chang, C.-W.; Jen, Y.-Y.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H., Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator, Polym. Chem., 2021, 12 (36), 5159-5167.
30. Subramaniam, P.; Jeevi Esther Rathnakumari, R.; Janet Sylvia Jaba Rose, J., Importance of ground state stabilization in the oxovanadium(IV)-salophen mediated reactions of phenylsulfinylacetic acids by hydrogen peroxide – non-linear hammett correlation, Polyhedron, 2016, 117, 496-503.
31. Santos, I. C.; Vilas-Boas, M.; Piedade, M. F. M.; Freire, C.; Duarte, M. T.; de Castro, B., Electrochemical and x-ray studies of nickel(II) schiff base complexes derived from salicylaldehyde: structural effects of bridge substituents on the stabilisation of the +3 oxidation state, Polyhedron, 2000, 19 (6), 655-664.
32. Destarac, M., Industrial development of reversible-deactivation radical polymerization: is the induction period over?, Polym. Chem., 2018, 9 (40), 4947-4967.
33. Zhao, G.; Yang, Y.; Zhang, C.; Song, Y.; Li, Y., The theoretical study of excited-state intramolecular proton transfer of N, N,-bis (salicylidene)-(2-(3″4′-diaminophenyl) benzothiazole), J. Lumin., 2021, 230, 117741-117751.
34. Duarte, L. G. T. A.; Germino, J. C.; Berbigier, J. F.; Barboza, C. A.; Faleiros, M. M.; de Alencar Simoni, D.; Galante, M. T.; de Holanda, M. S.; Rodembusch, F. S.; Atvars, T. D. Z., White-light generation from all-solution-processed OLEDs using a benzothiazole–salophen derivative reactive to the ESIPT process, Phys. Chem. Chem. Phys., 2019, 21 (3), 1172-1182.
35. Guliashvili, T.; Percec, V., A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomers, J. Polym. Sci., 2007, 45 (9), 1607-1618.
Chapter 2
1. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C., Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.
2. Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K., Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73-125.
3. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 2007, 32 (1), 93-146.
4. Ouchi, M.; Sawamoto, M., Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym. J. 2018, 50 (1), 83-94.
5. Bagheri, A.; Fellows, C. M.; Boyer, C., Reversible deactivation radical polymerization: from polymer network synthesis to 3D printing. Adv. Sci. 2021, 8 (5), 2003701.
6. Zhao, Y.; Ma, M.; Lin, X.; Chen, M., Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers. Angew. Chem. Int. Ed. 2020, 59 (48), 21470-21474.
7. Li, W.; Matyjaszewski, K.; Albrecht, K.; Möller, M., Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules 2009, 42 (21), 8228-8233.
8. Li, W.; Matyjaszewski, K., Cationic surface-active monomers as reactive surfactants for AGET emulsion ATRP of N-butyl methacrylate. Macromolecules 2011, 44 (14), 5578-5585.
9. Zehm, D.; Laschewsky, A.; Gradzielski, M.; Prévost, S.; Liang, H.; Rabe, J. P.; Schweins, R.; Gummel, J., Amphiphilic Dual brush block copolymers as “Giant Surfactants” and their aqueous self-assembly. Langmuir 2010, 26 (5), 3145-3155.
10. Thomson, M. E.; Manley, A.-M.; Ness, J. S.; Schmidt, S. C.; Cunningham, M. F., Nitroxide-mediated surfactant-free emulsion polymerization of N-butyl methacrylate with a small amount of styrene. Macromolecules 2010, 43 (19), 7958-7963.
11. Gallagher, J. J.; Hillmyer, M. A.; Reineke, T. M., Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustainable Chem. Eng. 2016, 4 (6), 3379-3387.
12. Wang, S.; Shuai, L.; Saha, B.; Vlachos, D. G.; Epps, T. H., From tree to tape: direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 2018, 4 (6), 701-708.
13. Noppalit, S.; Simula, A.; Billon, L.; Asua, J. M., Paving the way to sustainable waterborne pressure-sensitive adhesives using terpene-based triblock copolymers. ACS Sustainable Chem. Eng. 2019, 7 (21), 17990-17998.
14. Ebeling, B.; Vana, P., RAFT-Polymers with single and multiple trithiocarbonate groups as uniform gold-nanoparticle coatings. Macromolecules 2013, 46 (12), 4862-4871.
15. Zhang, Z.; Corrigan, N.; Boyer, C., A photoinduced dual-wavelength approach for 3D printing and self-healing of thermosetting materials. Angew. Chem. Int. Ed. 2022, 61 (11), e202114111.
16. Singh, R.; Rhee, H.-W., Controlled polymerization for lithium-ion batteries. Energy Storage Mater. 2022, 52, 598-636.
17. Yang, K.; Huang, X.; Huang, Y.; Xie, L.; Jiang, P., Fluoro-polymer@BaTiO3 Hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 2013, 25 (11), 2327-2338.
18. O'Brien, C.; Ignaszak, A., Polymer-grafted-carbon assembled via an electrochemically-aided atom transfer radical polymerization: Towards improved energy storage electrode. Electrochem. Commun. 2022, 135, 107198.
19. Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier, S., Bioapplications of RAFT polymerization. Chem. Rev. 2009, 109 (11), 5402-5436.
20. Grubbs, R. B., Nitroxide-mediated radical polymerization: limitations and versatility. Polym. Rev. 2011, 51 (2), 104-137.
21. Sciannamea, V.; Jérôme, R.; Detrembleur, C., In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108 (3), 1104-1126.
22. Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B., Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38 (1), 63-235.
23. Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization. Chem. Rev. 2001, 101 (9), 2921-2990.
24. Coessens, V.; Pintauer, T.; Matyjaszewski, K., Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001, 26 (3), 337-377.
25. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614-5615.
26. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust. J. Chem. 2005, 58 (6), 379-410.
27. D'Agosto, F.; Rieger, J.; Lansalot, M., RAFT-Mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2020, 59 (22), 8368-8392.
28. Hill, M. R.; Carmean, R. N.; Sumerlin, B. S., Expanding the scope of RAFT polymerization: recent advances and new horizons. Macromolecules 2015, 48 (16), 5459-5469.
29. Moad, G.; Rizzardo, E.; Thang, S. H., Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008, 49 (5), 1079-1131.
30. Yamago, S., Precision Polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev. 2009, 109 (11), 5051-5068.
31. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Use of iodocompounds in radical polymerization. Chem. Rev. 2006, 106 (9), 3936-3962.
32. Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M., Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules 1997, 30 (8), 2249-2253.
33. Li, P.; Qiu, K.-Y., Nickel-mediated living radical polymerization of styrene in conjunction with tetraethylthiuram disulfide. Polymer 2002, 43 (22), 5873-5877.
34. Ydens, I.; Degée, P.; Haddleton, D. M.; Dubois, P., Reactivity ratios in conventional and nickel-mediated radical copolymerization of methyl methacrylate and functionalized methacrylate monomers. European Polym. J. 2005, 41 (10), 2255-2263.
35. Debuigne, A.; Poli, R.; Jérôme, C.; Jérôme, R.; Detrembleur, C., Overview of cobalt-mediated radical polymerization: roots, state of the art and future prospects. Prog. Polym. Sci. 2009, 34 (3), 211-239.
36. Debuigne, A.; Caille, J.-R.; Jérôme, R., Highly efficient cobalt-mediated radical polymerization of vinyl acetate. Angew. Chem. Int. Ed. 2005, 44 (7), 1101-1104.
37. Benchaphanthawee, W.; Peng, C.-H., Organo-cobalt complexes in reversible-deactivation radical polymerization. Chem. Rec. 2021, 21 (12), 3628-3647.
38. Stoffelbach, F.; Haddleton, D. M.; Poli, R., Controlled radical polymerization of alkyl acrylates and styrene using a half-sandwich molybdenum(III) complex containing diazadiene ligands. European Polym. J. 2003, 39 (11), 2099-2105.
39. Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli, R.; Matyjaszewski, K., Origin of activity in Cu-, Ru-, and Os-mediated radical polymerization. Macromolecules 2007, 40 (24), 8576-8585.
40. Poli, R.; Allan, L. E. N.; Shaver, M. P., Iron-mediated reversible deactivation controlled radical polymerization. Prog. Polym. Sci. 2014, 39 (10), 1827-1845.
41. Teodorescu, M.; Gaynor, S. G.; Matyjaszewski, K., Halide anions as ligands in iron-mediated atom transfer radical polymerization. Macromolecules 2000, 33 (7), 2335-2339.
42. Rossi, B.; Prosperini, S.; Pastori, N.; Clerici, A.; Punta, C., New advances in titanium-mediated free radical reactions. Molecules 2012, 17 (12), 14700-14732.
43. Asandei, A. D.; Moran, I. W.; Saha, G.; Chen, Y., Titanium-mediated living radical styrene polymerizations. VI. Cp2TiCl-catalyzed initiation by epoxide radical ring opening: effect of the reducing agents, temperature, and titanium/epoxide and titanium/zinc ratios. J. Polym. Sci. 2006, 44 (7), 2156-2165.
44. Champouret, Y.; MacLeod, K. C.; Smith, K. M.; Patrick, B. O.; Poli, R., Controlled radical polymerization of vinyl acetate with cyclopentadienyl chromium β-diketiminate complexes: ATRP vs OMRP. Organometallics 2010, 29 (14), 3125-3132.
45. Champouret, Y.; MacLeod, K. C.; Baisch, U.; Patrick, B. O.; Smith, K. M.; Poli, R., Cyclopentadienyl chromium β-diketiminate complexes: initiators, ligand steric effects, and deactivation processes in the controlled radical polymerization of vinyl acetate. Organometallics 2010, 29 (1), 167-176.
46. Shaver, M. P.; Hanhan, M. E.; Jones, M. R., Controlled radical polymerization of vinyl acetate mediated by a vanadium complex. Chem. Commun. 2010, 46 (12), 2127-2129.
47. Perry, M. R.; Allan, L. E. N.; Decken, A.; Shaver, M. P., Organometallic mediated radical polymerization of vinyl acetate using bis(imino)pyridine vanadium trichloride complexes. Dalton Trans. 2013, 42 (25), 9157-9165.
48. Chang, C.-W.; Jen, Y.-Y.; Tang, S.-C.; Zhang, P.; Chen, C.; Peng, C.-H., Reversible-deactivation radical polymerization of vinyl acetate mediated by tralen, an organomediator. Polym. Chem. 2021, 12 (36), 5159-5167.
49. Benchaphanthawee, W.; Yang, Z.-W.; Hsu, H.-T.; Peng, C.-H., Reversible-deactivation radical polymerization of vinyl monomers mediated by schiff bases. Macromolecules 2024.
50. Nozoe, T., Über die farbstoffe im holzteile des “hinokl”-baumes. i. hinokitin und hinokitiol (Vorläufige Mitteilung). Bull. Chem. Soc. Jpn. 1936, 11 (3), 295-298.
51. Inoue, Y.; Suzuki, R.; Murata, I.; Nomura, H.; Isshiki, Y.; Kanamoto, I., Evaluation of antibacterial activity expression of the hinokitiol/cyclodextrin complex against bacteria. ACS Omega 2020, 5 (42), 27180-27187.
52. Domon, H.; Hiyoshi, T.; Maekawa, T.; Yonezawa, D.; Tamura, H.; Kawabata, S.; Yanagihara, K.; Kimura, O.; Kunitomo, E.; Terao, Y., Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. Microbiol. Immunol. 2019, 63 (6), 213-222.
53. Wang, Y.; Liu, X.; Chen, T.; Xu, Y.; Tian, S., Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biol. Technol. 2020, 159, 111038.
54. Camaioni, L.; Ustyanowski, B.; Buisine, M.; Lambert, D.; Sendid, B.; Billamboz, M.; Jawhara, S. Natural compounds with antifungal properties against candida albicans and identification of hinokitiol as a promising antifungal drug Antibiotics 2023, 12(11), 1603.
55. Huang, C.-H.; Lu, S.-H.; Chang, C.-C.; Thomas, P. A.; Jayakumar, T.; Sheu, J.-R., Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation. Eur. J. Pharmacol. 2015, 746, 148-157.
56. Chen, H.-Y.; Cheng, W.-P.; Chiang, Y.-F.; Hong, Y.-H.; Ali, M.; Huang, T.-C.; Wang, K.-L.; Shieh, T.-M.; Chang, H.-Y.; Hsia, S.-M. Hinokitiol exhibits antitumor properties through induction of ROS-mediated apoptosis and p53-driven cell-cycle arrest in endometrial cancer cell lines (Ishikawa, HEC-1A, KLE) Int. J. Mol. Sci. 2021, 22(15), 8268.
57. Koufaki, M.; Theodorou, E.; Alexi, X.; Nikoloudaki, F.; Alexis, M. N., Synthesis of tropolone derivatives and evaluation of their in vitro neuroprotective activity. Eur. J. Med. Chem. 2010, 45 (3), 1107-1112.
58. Jin, X.; Zhang, M.; Lu, J.; Duan, X.; Chen, J.; Liu, Y.; Chang, W.; Lou, H., Hinokitiol chelates intracellular iron to retard fungal growth by disturbing mitochondrial respiration. J. Adv. Res. 2021, 34, 65-77.
59. Qin, M.; Shao, B.; Lin, L.; Zhang, Z.-Q.; Sheng, Z.-G.; Qin, L.; Shao, J.; Zhu, B.-Z., Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic. Biol. Med. 2023, 194, 163-171.
60. Inamori, Y.; Sakagami, Y.; Morita, Y.; Shibata, M.; Sugiura, M.; Kumeda, Y.; Okabe, T.; Tsujibo, H.; Ishida, N., Antifungal activity of hinokitiol-related compounds on wood-rotting fungi and their insecticidal activities. Biol. Pharm. Bull. 2000, 23 (8), 995-997.
61. Ishiyama, A.; Iwatsuki, M.; Yamamoto, T.; Miura, H.; Ōmura, S.; Otoguro, K., Antimalarial tropones and their Plasmodium falciparum glyoxalase I (pfGLOI) inhibitory activity. J. Antibiot. 2014, 67 (7), 545-547.
62. Iwatsuki, M.; Takada, S.; Mori, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tsukashima, A.; Nonaka, K.; Masuma, R.; Otoguro, K.; Shiomi, K.; Ōmura, S., In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A–C, produced by Penicillium sp. FKI-4410. J. Antibiot. 2011, 64 (2), 183-188.
63. Okumura, S.; Hoshino, M.; Joshita, K.; Nishinomiya, T.; Murata, M., Hinokitiol inhibits polyphenol oxidase and enzymatic browning. Food Sci. Technol. Res. 2011, 17 (3), 251-256.
64. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M., Degenerative transfer and reversible termination mechanisms for living radical polymerizations mediated by cobalt porphyrins. Macromolecules 2006, 39 (24), 8219-8222.
65. Goto, A.; Sato, K.; Tsujii, Y.; Fukuda, T.; Moad, G.; Rizzardo, E.; Thang, S. H., Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001, 34 (3), 402-408.
66. Destarac, M., Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym. Chem. 2018, 9 (40), 4947-4967.
67. Fang, C.; Fantin, M.; Pan, X.; de Fiebre, K.; Coote, M. L.; Matyjaszewski, K.; Liu, P., Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 2019, 141 (18), 7486-7497.
68. Moad, G., Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization – status of the dilemma. Macromol. Chem. Phys. 2014, 215 (1), 9-26
69. Kwak, Y.; Tezuka, M.; Goto, A.; Fukuda, T.; Yamago, S., Kinetic study on role of ditelluride in organotellurium-mediated living radical polymerization (TERP). Macromolecules 2007, 40 (6), 1881-1885.
70. Wang, F.-S.; Tsai, Y.-W.; Xie, M.-Q.; Peng, C.-H., Computation-assisted investigation of polymer kinetics: mechanism of the hybridization of cobalt-mediated radical polymerization and atom transfer radical polymerization. Macromolecules 2020, 53 (24), 10855-10865.
71. Deglmann, P.; Müller, I.; Becker, F.; Schäfer, A.; Hungenberg, K.-D.; Weiß, H., Prediction of propagation rate coefficients in free radical solution polymerization based on accurate quantum chemical methods: vinylic and related monomers, including acrylates and acrylic acid. Macromol. React. Eng. 2009, 3 (9), 496-515.
Chapter 3
1. Yan, X.; Sun, T.; Song, Y.; Peng, W.; Xu, Y.; Luo, G.; Li, M.; Chen, S.; Fang, W.-W.; Dong, L.; Xuan, S.; He, T.; Cao, B.; Lu, Y., In situ thermal-responsive magnetic hydrogel for multidisciplinary therapy of hepatocellular carcinoma. Nano Lett. 2022, 22 (6), 2251-2260.
2. Park, J. S.; Park, J. W.; Ruckenstein, E., Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 2001, 42 (9), 4271-4280.
3. Chen, L.; Liu, M.; Lin, L.; Zhang, T.; Ma, J.; Song, Y.; Jiang, L., Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. Soft Matter 2010, 6 (12), 2708-2712.
4. Shang, J.; Shao, Z.; Chen, X., Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008, 9 (4), 1208-1213.
5. Zhou, Q.; Lyu, J.; Wang, G.; Robertson, M.; Qiang, Z.; Sun, B.; Ye, C.; Zhu, M., Me-chanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 2021, 31 (40), 2104536.
6. Lei, H.; Fan, D., Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.
7. Zhao, Y.-L.; Stoddart, J. F., Azobenzene-based light-responsive hydrogel system. Lang-muir 2009, 25 (15), 8442-8446.
8. Guimarães, C. F.; Ahmed, R.; Marques, A. P.; Reis, R. L.; Demirci, U., Engineering hydrogel-based biomedical photonics: design, fabrication, and applications. Adv. Mater. 2021, 33 (23), 2006582.
9. Haines, L. A.; Rajagopal, K.; Ozbas, B.; Salick, D. A.; Pochan, D. J.; Schneider, J. P., Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 2005, 127 (48), 17025-17029.
10. Tang, J.; Yin, Q.; Qiao, Y.; Wang, T., Shape morphing of hydrogels in alternating mag-netic field. ACS Appl. Mater. Interfaces. 2019, 11 (23), 21194-21200.
11. Shi, W.; Huang, J.; Fang, R.; Liu, M., Imparting Functionality to the Hydrogel by Mag-netic-Field-Induced Nano-assembly and Macro-response. ACS Appl. Mater. Interfaces. 2020, 12 (5), 5177-5194.
12. Kuo, J.-C.; Huang, H.-W.; Tung, S.-W.; Yang, Y.-J., A hydrogel-based intravascular microgripper manipulated using magnetic fields. Sens. Actuators A: Phys. 2014, 211, 121-130.
13. Bai, H.; Li, C.; Wang, X.; Shi, G., A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 2010, 46 (14), 2376-2378.
14. Marcombe, R.; Cai, S.; Hong, W.; Zhao, X.; Lapusta, Y.; Suo, Z., A theory of con-strained swelling of a pH-sensitive hydrogel. Soft Matter 2010, 6 (4), 784-793.
15. Xu, H.; Matysiak, S., Effect of pH on chitosan hydrogel polymer network structure. Chem. Commun. 2017, 53 (53), 7373-7376.
16. Wang, X.; Wang, Q., Enzyme-laden bioactive hydrogel for biocatalytic monitoring and regulation. Acc. Chem. Res. 2021, 54 (5), 1274-1287.
17. Moreira Teixeira, L. S.; Feijen, J.; van Blitterswijk, C. A.; Dijkstra, P. J.; Karperien, M., Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Bio-materials 2012, 33 (5), 1281-1290.
18. Um, S. H.; Lee, J. B.; Park, N.; Kwon, S. Y.; Umbach, C. C.; Luo, D., Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006, 5 (10), 797-801.
19. Lin, X.; Long, H.; Zhong, Z.; Ye, Q.; Duan, B., Biodegradable chitin nanofiber-alginate dialdehyde hydrogel: An injectable, self-healing scaffold for anti-tumor drug delivery. Int. J. Biol. Macromol. 2024, 270, 132187.
20. El-Husseiny, H. M.; Mady, E. A.; Doghish, A. S.; Zewail, M. B.; Abdelfatah, A. M.; Noshy, M.; Mohammed, O. A.; El-Dakroury, W. A., Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int. J. Biol. Macromol. 2024, 260, 129323.
21. He, J.; Li, Z.; Chen, J.; Wang, J.; Qiao, L.; Guo, B.; Hu, J., NIR/glucose stimuli-responsive multifunctional smart hydrogel wound dressing with NO/O2 dual gas-releasing prop-erty promotes infected diabetic wound healing. Chem. Eng. J. 2024, 492, 152249.
22. Zhang, Z.; Cao, Q.; Xia, Y.; Cui, C.; Qi, Y.; Zhang, Q.; Wu, Y.; Liu, J.; Liu, W., Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast can-cer recurrence and radiation skin injury. Bioact. Mater. 2024, 31, 408-421.
23. Dilruba Öznur, K. G.; Ayşe Pınar, T. D., Statistical evaluation of biocompatibility and biodegradability of chitosan/gelatin hydrogels for wound-dressing applications. Polym. Bull. 2024, 81 (2), 1563-1596.
24. Ghani, A.; Zare, E. N.; Makvandi, P.; Rabiee, N., Antioxidant, antibacterial and biode-gradable hydrogel films from carboxymethyl tragacanth gum and clove extract: Potential for wound dressings application. Carbohydr. Polym. Technol. Appl. 2024, 7, 100428.
25. Bhattarai, N.; Gunn, J.; Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010, 62 (1), 83-99.
26. Fu, J.; Yang, F.; Guo, Z., The chitosan hydrogels: from structure to function. New J. Chem. 2018, 42 (21), 17162-17180.
27. Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Tamayol, A.; Annabi, N.; Khademhosseini, A., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254-271.
28. Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z. Y.; Cui, W.; Annabi, N.; Ng, K. W.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Khademhosseini, A., Photocrosslinkable gelatin hy-drogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5 (1), 108-118.
29. Burdick, J. A.; Prestwich, G. D., Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23 (12), H41-H56.
30. Kim, I. L.; Mauck, R. L.; Burdick, J. A., Hydrogel design for cartilage tissue engineer-ing: A case study with hyaluronic acid. Biomaterials 2011, 32 (34), 8771-8782.
31. Luo, Y.; Kirker, K. R.; Prestwich, G. D., Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control. Release. 2000, 69 (1), 169-184.
32. Zhu, J., Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31 (17), 4639-4656.
33. Keys, K. B.; Andreopoulos, F. M.; Peppas, N. A., Poly(ethylene glycol) Star Polymer Hydrogels. Macromolecules 1998, 31 (23), 8149-8156.
34. Deng, Y.; Yang, L., Preparation and characterization of polyethylene glycol (PEG) hy-drogel as shape-stabilized phase change material. Appl. Therm. Eng. 2017, 114, 1014-1017.
35. Zhang, H.; Xia, H.; Zhao, Y., Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal. ACS Macro Lett. 2012, 1 (11), 1233-1236.
36. Lyons, J. G.; Geever, L. M.; Nugent, M. J. D.; Kennedy, J. E.; Higginbotham, C. L., Development and characterisation of an agar–polyvinyl alcohol blend hydrogel. J. Mech. Behav. Biomed. Mater. 2009, 2 (5), 485-493.
37. Millon, L. E.; Mohammadi, H.; Wan, W. K., Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 79B (2), 305-311.
38. Yang, Y.; Song, S.; Zhao, Z., Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 513, 315-324.
39. Zhou, C.; Wu, Q., A novel polyacrylamide nanocomposite hydrogel reinforced with natu-ral chitosan nanofibers. Colloids Surf. B Biointerfaces 2011, 84 (1), 155-162.
40. Subramani, R.; Izquierdo-Alvarez, A.; Bhattacharya, P.; Meerts, M.; Moldenaers, P.; Ramon, H.; Van Oosterwyck, H., The influence of swelling on elastic properties of polyacryla-mide hydrogels. Front. Mater. 2020, 7.
41. Faturechi, R.; Karimi, A.; Hashemi, A.; Yousefi, H.; Navidbakhsh, M., Influence of poly(acrylic acid) on the mechanical properties of composite hydrogels. Adv. Polym. Technol. 2015, 34 (2).
42. Gulyuz, U.; Okay, O., Self-healing polyacrylic acid hydrogels. Soft Matter 2013, 9 (43), 10287-10293.
43. Renault, K.; Fredy, J. W.; Renard, P.-Y.; Sabot, C., Covalent modification of biomole-cules through maleimide-based labeling strategies. Bioconjugate Chem. 2018, 29 (8), 2497-2513.
44. Szijj, P. A.; Bahou, C.; Chudasama, V., Minireview: Addressing the retro-Michael insta-bility of maleimide bioconjugates. Drug Discov. Today Technol. 2018, 30, 27-34.
45. Mejia, G.; Wang, Y.; Huang, Z.; Shi, Q.; Zhang, Z., Maleimide chemistry: enabling the precision polymer synthesis. Chin. J. Chem. 2021, 39 (12), 3177-3187.
46. Zhang, Y.; Huo, F.; Yin, C.; Yue, Y.; Hao, J.; Chao, J.; Liu, D., An off–on fluorescent probe based on maleimide for detecting thiols and its application for bioimaging. Sens. Actuators B: Chem. 2015, 207, 59-65.
47. Qu, L.; Yin, C.; Huo, F.; Li, J.; Chao, J.; Zhang, Y., A maleimide-based thiol fluores-cent probe and its application for bioimaging. Sens. Actuators B: Chem. 2014, 195, 246-251.
48. Staniforth, M.; Quan, W.-D.; Karsili, T. N. V.; Baker, L. A.; O’Reilly, R. K.; Stavros, V. G., First step toward a universal fluorescent probe: unravelling the photodynamics of an ami-no–maleimide fluorophore. J. Phys. Chem. A 2017, 121 (34), 6357-6365.
49. Achadu, O. J.; Nyokong, T., Graphene quantum dots decorated with maleimide and zinc tetramaleimido-phthalocyanine: Application in the design of “OFF-ON” fluorescence sensors for biothiols. Talanta 2017, 166, 15-26.
50. Xue, G.; Yu, S.; Qiang, Z.; Xiuying, L.; Tang, l.; Jiangrong, L., Application of malei-mide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’ fluorescence sensors for biothiols. Anal. Chim. Acta 2020, 1108, 46-53.
51. Zhang, X.; Tretjakov, A.; Hovestaedt, M.; Sun, G.; Syritski, V.; Reut, J.; Volkmer, R.; Hinrichs, K.; Rappich, J., Electrochemical functionalization of gold and silicon surfaces by a maleimide group as a biosensor for immunological application. Acta Biomater. 2013, 9 (3), 5838-5844.
52. Kanyong, P.; Sun, G.; Rösicke, F.; Syritski, V.; Panne, U.; Hinrichs, K.; Rappich, J., Maleimide functionalized silicon surfaces for biosensing investigated by in-situ IRSE and EQCM. Electrochem. commun. 2015, 51, 103-107.
53. Uchiyama, S.; Tomita, R.; Sekioka, N.; Imaizumi, E.; Hamana, H.; Hagiwara, T., Ap-plication of polymaleimidostyrene as a convenient immobilization reagent of enzyme in biosen-sor. Bioelectrochemistry 2006, 68 (2), 119-125.
54. Nawroth, J. F.; McDaniel, J. R.; Chilkoti, A.; Jordan, R.; Luxenhofer, R., Maleimide-functionalized poly(2-oxazoline)s and their conjugation to elastin-like polypeptides. Macromol. Biosci. 2016, 16 (3), 322-333.
55. Ravi, S.; Krishnamurthy, V. R.; Caves, J. M.; Haller, C. A.; Chaikof, E. L., Maleimide–thiol coupling of a bioactive peptide to an elastin-like protein polymer. Acta Biomater. 2012, 8 (2), 627-635.
56. Elliott, J. T.; Prestwich, G. D., Maleimide-functionalized lipids that anchor polypeptides to lipid bilayers and membranes. Bioconjugate Chem. 2000, 11 (6), 832-841.
57. Zhang, Y.; Wang, Y.; Bao, Y.; Lin, B.; Cheng, G.; Yuan, N.; Ding, J., Multifunctional PVA/gelatin DN hydrogels with strong mechanical properties enhanced by Hofmeister effect. olloids Surf. A: Physicochem. Eng. Asp. 2024, 691, 133833.
58. Khan, R.; Aslam Khan, M. U.; Stojanović, G. M.; Javed, A.; Haider, S.; Abd Razak, S. I., Fabrication of bilayer nanofibrous-hydrogel scaffold from bacterial cellulose, pva, and gelatin as advanced dressing for wound healing and soft tissue engineering. ACS Omega 2024, 9 (6), 6527-6536.
59. Graeber, G.; Díaz-Marín, C. D.; Gaugler, L. C.; Zhong, Y.; El Fil, B.; Liu, X.; Wang, E. N., Extreme water uptake of hygroscopic hydrogels through maximized swelling-induced salt loading. Adv. Mater. 2024, 36 (12), 2211783.
60. Penkavova, V.; Spalova, A.; Tomas, J.; Tihon, J., Polyacrylamide hydrogels prepared by varying water content during polymerization: Material characterization, reswelling ability, and aging resistance. Polym. Eng. Sci. 2022, 62 (3), 901-916.
61. Krishnan, G. R.; Yuan, Y.; Arzumand, A.; Sarkar, D., Gelation characteristics and ap-plications of poly(ethylene glycol) end capped with hydrophobic biodegradable dipeptides. J. Polym. Sci. 2014, 52 (14), 1917-1928.
62. Bhattacharya, S.; Shunmugam, R., Unraveling the effect of peg chain length on the physical properties and toxicant removal capacities of cross-linked network synthesized by thiol–norbornene photoclick chemistry. ACS Omega 2020, 5 (6), 2800-2810.