簡易檢索 / 詳目顯示

研究生: 汪孟涵
論文名稱: 氮氣流量對非平衡磁控濺鍍奈米晶氮化鋯薄膜之結構和性質的影響
Effects of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by Unbalanced Magnetron Sputtering
指導教授: 喩冀平
黃嘉宏
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 103
中文關鍵詞: 氮氣流量濺鍍氮化鋯
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功的利用非平衡式磁控濺鍍法鍍著奈米晶氮化鋯薄膜於(100)矽晶片和304不□鋼上。在研究中,主要探討改變氮氣流量對氮化鋯薄膜之組成、結構、性質以及腐蝕抗性的研究。氮氣流量改變的範圍從0.25至1.75 sccm。以X光繞射法來決定薄膜的晶粒大小,其結果小於15 nm。從AFM和SEM的結果也顯示氮化鋯薄膜晶粒為奈米級。薄膜氮鋯的比率(N/Zr ratio)隨氮氣流量從0.2改變至1。氮化鋯薄膜以(111)為主要的優選方向。改變氮氣分壓對其硬度並沒有太大的改變,除了在Zr 和ZrN的混合相,因為Zr是金屬其硬度相對較軟。ZrN膜的表面粗糙度會隨著氮氣流量的增加而減少。氮化鈦薄膜的電阻率隨著堆積因子的上升而下降和ZrN飽和鍵的增加而下降,而晶粒大小並不是影響電阻率變化的主要因素。在腐蝕抗性實驗方面,5%實驗水以及0.5M H2SO4 + 0.05M KSCN 溶液中的極化掃描實驗和鹽水噴霧實驗結果發現,若奈米晶氮化鋯薄膜厚大於220nm,則氮化鋯薄膜可以有效的防止腐蝕物質穿透而侵蝕到基板。對於極化掃描實驗而言,影響抗腐蝕優劣的重要因子包跨堆積程度、結晶程度和飽和鍵的多寡。對於鹽水噴霧實驗而言,膜表面的粗糙度就是一個關鍵性的指標


    Abstract

    Nano-crystalline ZrN films were successfully deposited on Si (100) and AISI 304 stainless steel substrates using unbalanced magnetron sputtering (UBM) system. The effect of nitrogen flow rate was investigated on the composition, structures, properties, and corrosion resistance of the ZrN film. The N/Zr ratio increases with increasing nitrogen flow rate. The preferred orientation (111) peak is dominant for all specimens. The roughness decreases with increasing the nitrogen flow rate for all samples. The electrical resistivity of ZrN films decreases from 271.6 to 34.6 then increases to 56.3 μΩ-cm. The residual stress of the ZrN film deposited on Si is lower than that on AISI 304 stainless steel. This may be due to the difference in thermal stress and conductivity of the substrate. The results of potentiodynamic polarization dynamics scan in both 5% NaCl and 0.5M H2SO4 + 0.05M KSCN solutions indicate that packing factor is more effective than film thickness to the corrosion resistance for the coating. However in the 5% NaCl solution, crystallinity and saturated bond ratio are more important than packing factor. For salt spray test, the corrosion area increases with the films roughness. The more saturated bonds exist in the ZrN thin films, the less defects in the film structure, the less corrosion area is observed. If a nano-crystalline ZrN film is thicker than 220 nm, it could effectively protect the substrate from the corrosive medium. High packing factor is good for corrosion resistance. Better crystallinity also improves the corrosion resistance of nano-crystal thin film.

    Contents…………………………………………………………….… I List of Figures………………………………………………………… IV List of Tables .………………………………………………………… XI Abstract………………………………………………………………... XIII 摘要……………………………………………………………………. XIV Chapter 1 Introduction……………………………………………. 1 Chapter 2 Literature Review……………………………………... 4 2.1 Unbalanced Magnetron Sputtering……………………….. 4 2.2 Characteristics of ZrN..…….…..………………………….. 7 2.3 Properties of ZrN Films….…..……………………………. 8 2.3.1 Hardness……………………………………………... 8 2.3.2 Resistivity of ZrN Film……………………………… 9 2.3.3 Residual Stress ……………………………………… 11 2.4 Effect of Nitrogen Flow Rate on the Deposition Rate ……. 14 Chapter 3 Experimental Details………………………………….. 15 3.1 Specimen Preparation and Coating process……………… 15 3.2 Methods of Characterization………………………………. 17 3.2.1 X-Ray Diffraction (XRD) ……………………………. 17 3.2.1.1 θ/2θ Scan ……………………………………….. 17 3.2.1.2 Glancing incidence X-ray diffraction (GIXRD)... 18 3.2.2 Field Emission Scanning Electron Microscopy (FEG-SEM)………………………………………….. 18 3.3 Composition Characterization ………...………………….. 18 3.3.1 Rutherford Backscattering Spectrometer (RBS)……… 18 3.3.2 Electron Spectroscopy For Chemical Analysis (ESCA) 19 3.3.3 Auger Electron Spectrometer (AES)……………....…. 20 3.4 Properties Characterization ……………………………….. 20 3.4.1 Electrical Resistivity……………………………….…. 20 3.4.2 Hardness……………………..………………………... 20 3.4.3 Residual Stress …………………..…...…………….… 21 3.4.4 Atomic Force Microscopy (AFM)………………….… 21 3.6 Corrosion Resistivity ………………….………………….. 21 3.6.1 Potentiodynamic Polarization Test …………………... 21 3.6.2 Salt Spray Test……………………………….…….…. 22 Chapter 4 Results and Discuss ………………..…………………… 23 4.1 Substrate Ion Current Density………………………..……. 26 4.2 Energy and Momentum …….………………………..……. 28 4.3 Structure……….…………….…………………………….. 34 4.3.1 Scanning Electron Microscopy (SEM)……………….. 34 4.3.2 Auger Electron Spectrometer (AES) ………………… 36 4.3.3 N/Zr Ratios and Packing Factor (RBS) ………..….…. 38 4.3.4 X-Ray Diffraction (XRD)……………………………. 44 4.3.5 Glancing Incident X-Ray Diffraction (GIXRD)……… 49 4.3.6 Roughness (AFM)……………………………….……. 52 4.3.6 Composition (ESCA) .………………………….……. 53 4.4 Properties………………………………………………... 56 4.4.1 Electrical Resistivity……………….………………… 56 4.4.2 Residual Stress………………………………………. 57 4.4.3 Hardness……………………………………………… 59 4.5 Corrosion Resistivity ……………………………………... 61 4.5.1 Potentiodynamic Polarization Scan ...………….. …… 61 4.5.1.1 1N H2SO4 + 0.05M KSCN ……………………. 61 4.5.1.2 5%NaCl ………………………………………… 64 4.5.2 Salt Spray Test ………………..…. ...………….. …… 66 Chapter 5 Discussion………………………………………………. 67 5.1 Deposition Rate……………………………………..……. 69 5.2 Nanocomposite…………………………………………… 74 5.3 Grain Size……………………………………….……..… 74 5.4 Hardness.............................................................................. 76 5.5 Resistivity………………………………………………… 81 5.6 Roughness…………………………………………………. 84 5.7 Residual Stress…………………………………………….. 87 5.8 Corrosion Resistance…………………………………..….. 90 5.8.1 Potentiodynamic polarization scan test………………. 90 5.8.2 Salt spray teat………………………………………… 95 Chapter 6 Conclusions…………………………………………….. 96 Chapter 7 Reference……………………………………..….……... 98

    Reference

    [1] M.Ohring, The Material Science of Thin Films, p.111, Academic Press, San Diego (1992).
    [2] J. Musil and J. Vlcek, Thin Solid Films, 343-344 (1999) 47.
    [3] McLeod PS, Hartsough LD, J. Vac. Sci. Technol. 14(1), (1977) 263.
    [4] Waits RK, J. Vac. Sci. Technol. 15(2), (1978) 263
    [5] B. Window, Surf. Coat. Technol. 71, (1995) 93.
    [6] P.J. Kelly, R.D. Arnell, Vacuum 56, (2000) 159.
    [7] Teer DG, US Patent No. 5 556 519.
    [8] N. Savvides, and B. Window, J. Vac. Sci. Technol. A., 4(2) (1986)504.
    [9] R.P. Howson, H.A. Ja’afer, A.G. Spencer, Thin Solid Films, 193-194(1990)127.
    [10] W.D. Sproul, Vacuum, 51(4)(1998)641.
    [11] P.J. Kelly, R.D. Arnell, Vacuum, 56(2000)159.
    [12] P.J. Kelly, R.D. Arnell, Surf. Coat. Technol., 97(1997)595.
    [13] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 149, (2002) 7.
    [14] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37.
    [15] J. Musil and J. Wolfe, Mater.Sci. Eng., A163(1993)211.
    [16] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7)(1991)1463.
    [17] L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188.
    [18] J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. Phys. 77(2002)14-21
    [19] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Thin Solid Films 405(2002)162.
    [20] J.A. Thorton, D.W. Hoffman, Thin Solid Films, 171(1989)81.
    [21] T. Miri, S. Fukuda, Y. Takemura, S.C.F., 140(2001)122.
    [22] B. Jonsson, S. Hogmark, ibid, 114(1984)257.
    [23] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
    [24] H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Tec. 74-75 (1995)273
    [25] Z. Wokulski, Phys. Stat. Solidi (a) 120(1990)175
    [26] J.E. Sundgren, Thin Solid Films 128, (1985) 21.
    [27] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140, (2001) 206.
    [28] W.C. Oliver. G.M. Pharr, J. Master. Res. 7(1992)1564.
    [29] J.E. Subdgren, B.O. Johansson, A. Rockeet, S.A. Barnett, J.E. Grennen, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), “ Physics and Chemistry of Protective Coatings”, MA, 1986, p.95.
    [30] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Surf. Coat. Technol.,66 (1994) 318.
    [31] S. Horita, J. Vac. Sci. Tech., A14(1)(1996)203.
    [32] M.Yoshitake, T. Yotsuya, S. Ogawa, Jpn. J. Appl. Phys., 31 (1992) 4002.
    [33] Shozo Inoue, Takaaki Ohba, Hironori Takata, Keiji Loterazawa, Thin Solid Films, 343-344 (1999) 230.
    [34] B.O. Johansson, H.T.G. Hentzell, J.M.E. Harper, J.J. Cuomo, J. Mater. Res. 1 (1986) 422
    [35] Milton Ohring, The Materials Science of Thin Films, Academic Press, New York, 1992.
    [36] P. Schwarzcopf, R. Kieffer, Refractory Hard Metals, Macmillan, New York, 1953, p. 37.
    [37] K. Schwarz, A.R. Williams, J.J. Cuomo, J.H.E. Harper, H.T.G. Hentzell, Phys. Rev. B 32 (12) (1985) 8312.
    [38] A. Dunaud, H.D. Flack, K. Yvon, Phys. Rec. B 31 (1985) 2316.
    [39] P. Blaha, J. Redinger, K. Schwarz, Phys. Rev. B 31 (1985) 2316.
    [40] A. Neckel, Intern. J. Quantim Chem. 23 (1983) 1317.
    [41] H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.-C. Parlebas, Applied Surface Science 200 (2002) 231-238
    [42] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37.
    [43] V. Valvoda, R. Kuzel. Jr., R. Cerny, d. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401.
    [44] Society for Automotive Engineering, Residual Stress Measurement by X-ray Diffraction, SAE J748a, 2nd Ed. (1971).
    [45] I. C. Noyan, J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, (1987)
    [46] V. Valvoda, R. Kuzel. Jr., R. Cerny, d. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401
    [47] R. Feder, B. S. Berry, J. Appl. Crystallogr., 3 (1970) 372.
    [48] E. l. Haase, Thin Solid Films, 124 (1985) 283.
    [49] H. Uchida, T. Kiguchi, A. Saiki, N. Wakiya, N. Ishizawa, K. Shinozaki and N. Mizutani, J. Cermic Society of Japan, 107(7) (1999) 606.
    [50] C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73-78.
    [51] Chuan-Pu Liu, Heng-Ghieh Yang, Thin Solid Films, 444 (2003) 111–119
    [52] J.E. Sundgren, B.O. Johansson and S.E. Karlsson, Thin Solid Films 105, (1983) 353.
    [53] L. Combaidere, J. Machet, Surf. Coat. Technol. 82, (1996) 145.
    [54] J. Stimmel, J. Vac. Sci. Technol. B 4(6), (1986) 1377.
    [55] Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol. 90, (1997) 64.
    [56] S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol. 80, (1996) 66.
    [57] T. Yotsuya, M.Y oshitake, T.Kodama, Cryogenics 37 (1997) 817.
    [58] I.A. Ovid’ko, SCIENCE VOL 295 29 MARCH 2002
    [59] Jakob Schiøtz* and Karsten W. Jacobsen, SCIENCE VOL 301 5 SEPTEMBER 2003
    [60] M. Del Re, R Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol. 174-175 (2003) 240-245
    [61] I. Milosev, H.-H. Strehblow, and B. Navinsek, Thin Solid Films 303 (1997) 246-254
    [62] I. Milosev, H.-H. Strehblow, M. Gaberscek and B. Navinsek, Surface and Interface Analysis, VOL 24, 448-458 (1996)
    [63] Handbook of X-ray Photoelectron Spectroscopy
    [64] W.L. Pan, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 127(1998)111.
    [65] C.T. Chen, Y.C. Song, G.-P. Yu and J.-H. Huang, J. Mater. Eng. Perform. 7(3), (1998) 324.
    [66] F.S. Shieu, L.H. Cheng, Y.C. Sung, J.H. Huang and G.P. Yu, J. Vac. Sci. Technol. A 15(4), (1997) 2318.
    [67] J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, p.95, American Institute of Physics, MA (1986).
    [68] A. Callenas and L. I. Johansson, Physical Review B, VOL 30, No 2 (635-639)
    [69] P. Blaha, J. Redinger, and K Schwarz, Physical Review B, VOL 31, No 4 (2316-2325)
    [70] K Schwarz, A.R. Williams, J. J. Cuomo, J. H. E. Harper, Physical Review B, VOL 32, No 12 (8312-8316)
    [71] Joanne L.Murray, Phase Diagram of Binary Titanium Alloys, p.176, ASM International, Ohio (1987).
    [72] J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater. 42, (2000) 573
    [73] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167, (2003) 59-67
    [74] Editor-in-chief , Thaddeus B.Massalski, Editors :Joanne L.Murray Lawrence H.Bennett Hugh Baker, Binary Alloy Phase Diagrams Volume 1-III, American society for metal
    [75] K.W. Whang and Y.W. Seo, J. Vac. Sci. Technol. A 11, (1993) 1496.
    [76] S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol. 127, (2000) 144.
    [77] F. Elstner, A. Ehrlich, H. Giegengack, H. Kupfer and F. Richter, J. Vac. Sci. Technol. A 12(2), (1994) 476
    [78] M. Kawamura, Y. Abe, H. Yanagisawa, K. Sasaki, Thin Solid Films 287, (1996) 115.
    [79] K.W. Lee, Y.W. Chung, C.Y. Chan, Surf. Coat. Technology 168, (2003)57.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE