簡易檢索 / 詳目顯示

研究生: 許志宏
Chih-Hung Hsu
論文名稱: 人類巨細胞病毒迅早期蛋白IE2藉調控染色質重組因子控制宿主及病毒本身之基因轉錄機制
Human Cytomegalovirus Immediate-early protein 2 regulates cellular and viral gene transcription through modulating chromatin remodeling factors
指導教授: 張大慈
Dah-Tsyr Chang
阮麗蓉
Li-Jung Juan
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 133
中文關鍵詞: 人類巨細胞病毒迅早期蛋白質組蛋白乙醯基轉移酵素基因啟動子組蛋白去乙醯基酵素組蛋白甲基轉移酵素
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類巨細胞病毒(Human cytomegalovirus)是一種很盛行的皰疹病毒,其中迅早期蛋白質IE2(Immediate-early protein 2)是一種關鍵的調控性蛋白質。本論文研究發現IE2可能藉由影響宿主細胞中泛用的共同轉錄調控因子而達到調控基因轉錄之效果。
    許多病毒蛋白以細胞中的組蛋白乙醯基轉移酵素(histone acetyltransferase)為調控的目標致發展出疾病。人類巨細胞病毒的迅早期蛋白質IE2 可藉由和腫瘤抑制因子p53 結合而抑制其功能,但是其中的機制仍然不清楚。我們發現IE2能與p53的共同活化因子p300/CBP結合而抑制其乙醯基轉移酵素的活性,並可同時阻止p53及組蛋白的乙醯化。更進一步的實驗結果顯示IE2的1~98之氨基酸片段即具有抑制p300/CBP的能力。進一步以細胞實驗發現p53下游基因啟動子(promoter)的p53結合區域會受到IE2加入之影響而使得該區域的p53以及乙醯化組蛋白的量減少,但反應中使用缺乏組蛋白乙醯基轉移酵素抑制區域(HAT inhibition domain)之IE2則無此能力。進一步將p53序列中能乙醯化之氨基酸位點突變,結果發現IE2仍然能減少點突變之p53的轉錄及和DNA結合活性,顯示IE2抑制p53的活性可能和p53的乙醯化無關,但可能藉由調控組蛋白之乙醯化已達到抑制p53的目的。本研究亦發現只有野生型IE2具有抗細胞凋亡的能力。綜合而言,本研究發現IE2能負向調控p53之活性,係經由抑制p53之共同活化因子p300/CBP所引起之組蛋白乙醯化造成,因此IE2可能具有致癌性。
    IE2在控制病毒複製過程扮演重要的角色,為進入爆裂期(lytic cycle),HCMV 需要viral major immediate-early promoter (MIEP) 的完全活化,其活性在in vitro狀況已證實會被IE2自動抑制,但是相關機制尚未明瞭、是否具特殊生理意義亦不清楚。本研究首先證明IE2會藉由吸引重要的共同調節因子到MIEP而導致染色質的結構轉變,此過程會發生在HCMV 感染細胞的潛伏期及爆裂期。在non-permissive 的細胞中IE2可與MIEP結合,並造成MIEP上的crs (cis-repression sequence)周遭區域的組蛋白之去乙醯化。在被HCMV感染的潛溶期細胞中,IE2 則會結合到crs 並吸引Histon H3K9的甲基轉移酵素和Mi-2 共同抑制因子複合體,此時IE2扮演區域性DNA甲基化的媒介。相反的,IE2在HCMV感染的爆裂期細胞中能吸引共同活化因子 PCAF到MIEP。本發現顯示IE2能吸引特定的染色質共同調節因子以調節HCMV主要的promoter,因此IE2的表現及功能在HCMV的潛伏期和活化期均扮演重要的角色。


    Human cytomegalovirus (HCMV) is a kind of high prevalence herpesvirus, and the immediate-early protein 2 (IE2) is one of the critical regulatory viral proteins of HCMV. In this study, we demonstrate that IE2 regulates transcriptional process by affecting common transcription cofactors on both cellular and viral promoters.

    Various viral proteins can target cellular transcriptional regulator to modulate transcription in which histone acetyltransferases (HATs) serve as a key common target for viral proteins. The immediate-early 2 protein (IE2) of human cytomegalovirus (HCMV) interacts with the tumor suppressor p53, and downregulates its functions by unknown mechanisms. In our study, we demonstrate that IE2 influences the p53 functions through inhibiting the acetyltransferase activity of the p53 coactivators, p300 and CREB-binding protein (CBP), which in turn inhibits functions of both histones and p53. IE2 can directly interact with p300 and CBP, and the minimal HAT inactivation region on IE2 contains the N-terminal 98 amino acids. It also decreases the level of local acetylated histones on p53-dependent promoters, such that the in vivo DNA binding ability of p53 is influenced. However, the mutant IE2 proteins that lack the HAT inhibition region do not have similar function. In addition, the p53 acetylation site mutant, K320/373/382R, retains both DNA binding and promoter transactivation activity in vivo and these effects are suppressed by IE2 as well. On the other hand, we have also observed that only wild-type IE2 has an antiapoptotic effect. Together with these finding, our results imply that HCMV IE2 represses p53-dependent gene activation through inhibiting p300/CBP-mediated local histone acetylation and that IE2 may have oncogenic activity.

    In addition, IE2 plays an important role in viral replication. To enter lytic cycle, HCMV requires full activation of the HCMV major immediate-early promoter (MIEP) whose activity is shown to be autorepressed by the IE2 in vitro, with unknown mechanism and physiological significance. Here we demonstrate that IE2 mediates local chromatin structure remodeling via recruitment of distinct coregulators to MIEP in HCMV latently or lytically infected cells. IE2-binding to MIEP in HCMV non-permissive cells results in inhibition of the MIEP activity in a cis-repression sequence (crs)- and histone deacetylase-dependent manner. In cells latently infected by HCMV, IE2 binding to crs recruits histone 3 K9 methylatransferases as well as the Mi-2 corepressor complex which involves distinct activities such as ATP-dependent chromatin remodeling, histone deacetylation and binding to methylated CpG. Consistently, IE2 also mediates local DNA methylation. In contrast, IE2 recruits coactivator PCAF to MIEP in HCMV lytically infected cells. Taken together, these studies indicate that IE2 recruits specific chromatin coregulators to regulate the activity of MIEP and this may potentially play an important role to determinate whether HCMV enter latency or lytic cycle.

    Table of Contents Materials and methods Abstract (English) 1 Abstract (Chinese) 3 Chapter I Background 5 Chapter II Material and methods 18 Chapter III HCMV IE2-mediated inhibition of HAT activity downregulates p53 function 31 Introduction 32 Results 35 Chapter IV Immediate-early protein 2-mediated Chromatin Remodeling Regulates Latency and Activation of the Human Cytomegalovirus 50 Introduction 51 Results 59 Chapter V Discussion 73 Chapter VI Figures 85 Reference 118

    References

    Ahn, J. H., Xu, Y., Jang, W.J., Matunis, M. J., Hayward, A.G. (2001). Evaluation of interactions of human cytomegalovirus immediate-early IE2 p with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J. Virol. 75, 3859–3872.
    Alland, L., Muhle, R., Hou, H. Jr., Potes, J., Chin, L., Schreiber, A.N., DePinho, R.A. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49-55

    Arlt, H., D. Lang, S., Gebert, and Stamminger, T. (1994). Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J. Virol. 68, 4117-4125.

    Asahara, H., Tartare-Deckert, S., Nakagawa, T., Ikehara, T., Hirose, F., Hunter, T., Ito, T. and Montminy, M. (2002) Dual roles of p300 in chromatin assembly and transcriptional activation in cooperation with nucleosome assembly protein 1 in vitro. Mol Cell Biol, 22, 2974-2983.

    Avantaggiati, M.L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A.S. and Kelly, K. (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell, 89, 1175-1184.

    Ayer, D.E. (1999). Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9, 193-198

    Bain, M., Mendelson, M. and Sinclair, J. (2003) Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol, 84, 41-49.

    Bannister, A.J. and Kouzarides, T. (1996) The CBP co-activator is a histone acetyltransferase. Nature, 384, 641-643.

    Becker, Y., Darai, G. (1993). Molecular aspects of human cytomegalovirus diseases. Springer-Verlag Berlin Heidelberg.

    Blanton, R. A. and Tevethia, M. J. (1981). Immunoprecipitation of virus-specific immediate-early and early polypeptides from cells lytically infected with human cytomegalovirus strain AD169. Virology 112, 262-273.

    Boa S, Coert C, Patterton HG. (2003). Saccharomyces cerevisiae Set1p is a methyltransferase specific for lysine 4 of histone H3 and is required for efficient gene expression. Yeast. 20, 827-35.

    Boldogh, I., AbuBakar, S. and Albrecht, T. (1990) Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science, 247, 561-564.

    Boppana S.B., Fowler K.B., Britt W.J., Stagno S., Pass R. F. (1999). Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics 104, 55-60.

    Bosch, F.X., Ribes, J., Cleries, R. and Diaz, M. (2005) Epidemiology of hepatocellular carcinoma. Clin Liver Dis, 9, 191-211, v.

    Bresnahan, W. A., T. Albrecht, and E. A. Thompson. (1998). The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J. Biol. Chem. 273, 22075-22082.

    Britt, W. J., Mach, M. (1996). Human cytomegalovirus glycoproteins. Intervirology 39, 401-412.

    Brooks, C.L., Gu, W. (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol., 15, 164-171.

    Brown, C.E., Lechner, T., Howe, L. and Workman, J.L. (2000) The many HATs of transcription coactivators. Trends Biochem Sci, 25, 15-19.

    Bryant, L.A., Mixon, P., Davidson, M., Bannister, A.J., Kouzarides, T. and Sinclair, J.H. (2000) The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF. J Virol, 74, 7230-7237.

    Caron, C., Col, E. and Khochbin, S. (2003) The viral control of cellular acetylation signaling. BioEssays, 25, 58-65.

    Castillo, J.P. and Kowalik, T.F. (2002) Human cytomegalovirus immediate early proteins and cell growth control. Gene, 290, 19-34.

    Castillo, J.P., Yurochko, A.D. and Kowalik, T.F. (2000) Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol, 74, 8028-8037.

    Caswell, R., C. Hagemeier, C. J. Chiou, G. Hayward, T. Kouzarides, and J. Sinclair. (1993). The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J. Gen. Virol. 74, 2691-2698.

    Caswell, R., L. Bryant, and J. Sinclair. (1996). Human cytomegalovirus immediate-early 2 (IE2) protein can transactivate the human hsp70 promoter by alleviation of Dr1-mediated repression. J. Virol. 70, 4028-4037.

    Chakravarti, D., Ogryzko, V., Kao, H.Y., Nash, A., Chen, H., Nakatani, Y. and Evans, R.M. (1999) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell, 96, 393-403.

    Chen, C.J., Deng, Z., Kim, A.Y., Blobel, G.A. and Lieberman, P.M. (2001) Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol, 21, 476-487.

    Chen, J.Y., Funk, W.D., Wright, W.E., Shay, J.W. and Minna, J.D. (1993) Heterogeneity of transcriptional activity of mutant p53 proteins and p53 DNA target sequences. Oncogene, 8, 2159-2166.

    Cherrington, J. M., E. L. Khoury, and E. S. Mocarski. (1991). Human cytomegalovirus ie2 negatively regulates gene expression via a short target sequence near the transcription start site. J. Virol. 65, 887-896.

    Chiou, C. J., J. Zong, I. Waheed, and G. S. Hayward. (1993). Identification and mapping of dimerization and DNA-binding domains in the C terminus of the IE2 regulatory protein of human cytomegalovirus. J. Virol. 67, 6201-6214.

    Chiou, S.H., Yang, Y.P., Lin, J.C., Hsu, C.H., Jhang, H.C., Yang, Y.T., Lee, C.H., Ho, L.L., Hsu, W.M., Ku, H.H., Chen, S.J., Chen, S.S., Chang, M.D., Wu, C.W. and Juan, L.J. (2006) The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. J Immunol, 177, 6199-6206.

    Choi, K.S., Kim, S.J., Kim, S., (1995). The retinoblastoma gene product negatively regulates transcriptional activation mediated by the human cytomegalovirus IE2 protein. Virology 208, 450–456.

    Cinatl, J., Jr., Scholz, M. and Doerr, H.W. (2005) Role of tumor cell immune escape mechanisms in cytomegalovirus-mediated oncomodulation. Med Res Rev, 25, 167-185.

    Cinatl, J., Jr., Vogel, J.U., Kotchetkov, R. and Wilhelm Doerr, H. (2004) Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev, 28, 59-77.

    Cobbs, C.S., Harkins, L., Samanta, M., Gillespie, G.Y., Bharara, S., King, P.H., Nabors, L.B., Cobbs, C.G. and Britt, W.J. (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res, 62, 3347-3350.

    DeMarchi J. M., Schmidt C. A., Kaplan A. S. (1980). Patterns of transcription of human cytomegalovirus in permissively infected cells. J Virol. 1980 35, 277-86.

    Doniger, J., Muralidhar, S. and Rosenthal, L.J. (1999) Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev, 12, 367-382.

    Eiben, G.L., da Silva, D.M., Fausch, S.C., Le Poole, I.C., Nishimura, M.I. and Kast, W.M. (2003) Cervical cancer vaccines: recent advances in HPV research. Viral Immunol, 16, 111-121.

    el-Deiry, W.S. (1998) Regulation of p53 downstream genes. Semin Cancer Biol, 8, 345-357.

    el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W. and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell, 75, 817-825.

    Ellsmore, V., Reid, G.G. and Stow, N.D. (2003) Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells. J Gen Virol, 84, 639-645.
    Hake, S.B., Xiao, A. and Allis, C.D. (2004) Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer, 90, 761-769.

    Espinosa, J.M. and Emerson, B.M. (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell, 8, 57-69.

    Fishman, J.A., and Rubin, R.H. (1998). Infections in organ-transplant recipients. N. Engl. J. Med. 338, 1741 – 1751.

    Fortunato, E.A., Sommer, M.H., Yoder, K. and Spector, D.H. (1997) Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol, 71, 8176-8185.

    Fortunato, E.A. and Spector, D.H. (1999) Regulation of human cytomegalovirus gene expression. Adv Virus Res, 54, 61-128.

    Fowler, K. B., F. P. McCollister, A. J. Dahle, S. Boppana, W. J. Britt, and R. F. Pass. (1997). Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection. J. Pediatr. 130, 624-630.

    Grossman, S.R., Deato, M.E., Brignone, C., Chan, H.M., Kung, A.L., Tagami, H., Nakatani, Y. and Livingston, D.M. (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science, 300, 342-344.

    Gu, W. and Roeder, R.G. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90, 595-506.

    Gu, W., Shi, X.-L. and Roeder, R.G. (1997) Synergistic activation of transcription by CBP and p53. Nature, 387, 819-827.

    Hagemeier C., Walker S., Caswell R., Kouzarides T. and Sinclair J. (1992). The human cytomegalovirus 80-kilidalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID J. Virol. 66, 4452–4456.
    Harkins, L., Volk, A.L., Samanta, M., Mikolaenko, I., Britt, W.J., Bland, K.I. and Cobbs, C.S. (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet, 360, 1557-1563.

    Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L., and Ayer, D.C. (1997). Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341-347.

    Hassig, C.A., Tong, J.K., Fleischer, T.C., Owa, T., Grable, P.G., Ayer, D.E., and Schreiber, S.L. (1998). A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 95, 3519-3524.

    Heinzel, T., Lavinsky, R.M., Mullen, T.M., Soderstrom, M., Laherty, C.D., Torchia, J., Yang, W.M., Brard, G., Ngo, S.D., Davie, J.R., Seto, E., Eisenman, R.N., Rose, D.W., Glass, C.K., Rosenfeld, M.G. (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43-48

    Hermiston, T.W., Malone, C.L., Witte, P.R. and Stinski, M.F. (1987) Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J Virol, 61, 3214-3221.

    Hermiston, T. W., C. L. Malone, and M. F. Stinski. (1990). Human cytomegalovirus immediate-early two protein region involved in negative regulation of the major immediate-early promoter. J. Virol. 64, 3532-3536.

    Hofmann, H., Floss, S., Stamminger, T., (2000). Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J. Virol. 74, 2510–2524.

    Hsu, C.-H., Chang, M. D. T., Tai, K.-Y., Yang, Y.-T., Wang, P.-S., Chen, C.-J., Wang, Y.-H., Lee, S.-C., Wu, C.-W. and Juan, L.-J. (2004) HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J. 23, 2269-2280

    Huang, G., Yan, Q., Wang, Z., Chen, X., Zhang, X., Guo, Y. and Li, J.J. (2002) Human cytomegalovirus in neoplastic cells of Epstein-Barr virus negative Hodgkin's disease. Int J Oncol, 21, 31-36.

    Ishizuka, T. and Lazar, M.A. (2003) The N-CoR/histone deacetylase 3 complex is required for repression by thyroid hormone receptor. Mol Cell Biol, 23, 5122-5131.

    Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E. and Yao, T.P. (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. Embo J, 20, 1331-1340.

    Jenkins, D. E., C. L. Martens, and E. S. Mocarski. (1994). Human cytomegalovirus late protein encoded by ie2: a trans-activator as well as a repressor of gene expression. J. Gen. Virol. 75, 2337-2348.

    Jin, Y., Zeng, S.X., Dai, M.S., Yang, X.J. and Lu, H. (2002) MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J Biol Chem, 277, 30838-30843.

    Jones, T.R., Wiertz, E.J., Sun, L., Fish, K.N., Nelson, J.A. and Ploegh, H.L. (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A, 93, 11327-11333.

    Juan, L.J., Shia, W.J., Chen, M.H., Yang, W.M., Seto, E., Lin, Y.S. and Wu, C.W. (2000) Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem, 275, 20436-20443.

    Jupp, R., O. Flores, J. A. Nelson, and P. Ghazal. (1993a). The DNA-binding subunit of human transcription factor IID can interact with the TATA box as a multimer. J. Biol. Chem. 268, 16105-16108.

    Jupp, R., S. Hoffmann, R. M. Stenberg, J. A. Nelson, and P. Ghazal. (1993b). Human cytomegalovirus IE86 protein interacts with promoter-bound TATA-binding protein via a specific region distinct from the autorepression domain. J. Virol. 67, 7539-7546.

    Kerry, J. A., M. A. Priddy, and R. M. Stenberg. (1994). Identification of sequence elements in the human cytomegalovirus DNA polymerase gene promoter required for activation by viral gene products. J. Virol. 68, 4167-4176.

    Kondo, K. and Mocarski, E.S. (1995) Cytomegalovirus latency and latency-specific transcription in hematopoietic progenitors. Scand J Infect Dis Suppl, 99, 63-67.

    Landolfo, S., Gariglio, M., Gribaudo, G. and Lembo, D. (2003) The human cytomegalovirus. Pharmacol Ther, 98, 269-297.

    Lang, D. and Stamminger, T. (1993) The 86-kilodalton IE-2 protein of human cytomegalovirus is a sequence-specific DNA-binding protein that interacts directly with the negative autoregulatory response element located near the cap site of the IE-1/2 enhancer-promoter. J Virol, 67, 323-331.

    Lang, D., S. Gebert, H. Arlt, and T. Stamminger. (1995). Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J. Virol. 69, 6030-6037.

    Langley, E., Pearson, M., Faretta, M., Bauer, U.M., Frye, R.A., Minucci, S., Pelicci, P.G. and Kouzarides, T. (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J, 21, 2383-2396.

    Lee, G., Wu. J., Luu. P., et al. (1996). Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor. Proc. Natl. Acad. Sci. USA. 93, 2570-2575.

    Liu, L., Scolnick, D.M., Trievel, R.C., Zhang, H.B., Marmorstein, R., Halazonetis, T.D. and Berger, S.L. (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol, 19, 1202-1209.

    Lukac, D.M. and Alwine, J.C. (1999) Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J Virol, 73, 2825-2831.

    Lukac, D.M., Harel, N.Y., Tanese, N. and Alwine, J.C. (1997) TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol, 71, 7227-7239.

    Luo, J., Li, M., Tang, Y., Laszkowska, M., Roeder, R.G. and Gu, W. (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A, 101, 2259-2264.

    Luo, J., Su, F., Chen, D., Shiloh, A. and Gu, W. (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408, 377-381.

    Macias, M.P. and Stinski, M.F. (1993) An in vitro system for human cytomegalovirus immediate early 2 protein (IE2)-mediated site-dependent repression of transcription and direct binding of IE2 to the major immediate early promoter. Proc Natl Acad Sci U S A, 90, 707-711.

    Mackowiak, P.A. (1987) Microbial oncogenesis. Am J Med, 82, 79-97.

    Marchini, A., Liu, H. and Zhu, H. (2001) Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol, 75, 1870-1878.

    Mauser, A., Saito, S., Appella, E, Anderson, C.W., Seaman, W.T. and Kenney, S. (2002) The Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol, 76, 12503-12512.

    McDonough, S. H., and D. H. Spector. (1983). Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125, 31-46.
    Meier, J. L. and Stinski, M. F. (1996). Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39, 331-342.

    Meier, J.L., and Pruessner, J.A. (2000). The human cytomegalovirus major immediate-early distal enhancer region is required for efficient viral replication and immediate-early gene expression. J. Virol. 74, 1602 – 1613.

    Mellor, J. (2006) Dynamic nucleosomes and gene transcription. Trends Genet, 22, 320-329.

    Mocarski, E. S., and Courcelle, C. T. (2001). Cytomegalovirus and their replication. In D. Knipe, & P. Howley (Eds.), Fields Virology (pp. 2629– 2673). Philadelphia: Lippincott, Williams and Wilkins.

    Mocarski, E.S., Kemble, G.W., Lyle, J.M., and Greaves, R.F. (1996). A deletion mutant in the human cytomegalovirus gene encoding IE1 (491aa) is replication defective due to failure in autoregulation. Proc. Natl. Acad. Sci. USA 93, 11321 – 11326.

    Murphy, J.C., Fischle, W., Verdin, E., and Sinclair, J.H. (2002). Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J. 21, 1112-1120.
    Nakamura, S., Roth, J.A. and Mukhopadhyay, T. (2000) Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol, 20, 9391-9398.

    Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. and Nakatani, Y. (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953-959.

    Pacsa, A.S., Kummerlander, L., Pejtsik, B. and Pali, K. (1975) Herpesvirus antibodies and antigens in patients with cervical anaplasia and in controls. J Natl Cancer Inst, 55, 775-781.

    Pass, R. F., S. Stagno, et al. (2001). “Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up.” Pediatrics 66(5), 758-62.

    Pizzorno, M.C. and Hayward, G.S. (1990) The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site. J Virol, 64, 6154-6165.

    Prives, C. and Manley, J.L. (2001) Why is p53 acetylated? Cell, 107, 815-818.

    Prösch, S., Heine, A.K., Volk, H.D., and Krüger, D.H. (2001). CAAT/enhancer-binding proteins α and β negatively influence the capacity of tumor necrosis factor α to upregulate the human cytomegalovirus IE1/2 enhancer/promoter by nuclear factor κB during monocyte differentiation. J. Biol. Chem. 276, 40712 – 40720.

    Reeves, M., Murphy, J., Greaves, R., Fairley, J., Brehm, A. and Sinclair, J. (2006) Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol, 80, 9998-10009.

    Reeves, M.B., Lehner, P.J., Sissons, J.G. and Sinclair, J.H. (2005a) An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol, 86, 2949-2954.

    Reeves, M.B., MacAry, P.A., Lehner, P.J., Sissons, J.G. and Sinclair, J.H. (2005b) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A, 102, 4140-4145.

    Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF. (2004). Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell. 14, 727-38.

    Rubin, R. H. (1990) Impact of cytomegalovirus infection on organ transplant recipients. Rev. Infect. Dis. 12, S-754-762.

    Sakaguchi, K., Herrera, J.E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W. and Appella, E. (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev, 12, 2831-2841.

    Samanta, M., Harkins, L., Klemm, K., Britt, W.J. and Cobbs, C.S. (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol, 170, 998-1002.

    Sax, J.K., Fei, P., Murphy, M.E., Bernhard, E., Korsmeyer, S.J. and El-Deiry, W.S. (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 4, 842-849.

    Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol. 6, 73-7.

    Schwartz, R., M. H. Sommer, A. Scully, and D. H. Spector. (1994). Site-specific binding of the human cytomegalovirus IE2 86-kilodalton protein to an early gene promoter. J. Virol. 68, 5613-5622.

    Schwartz, R., Helmich, B. and Spector, D.H. (1996) CREB and CREB-binding proteins play an important role in the IE2 86-kilodalton protein-mediated transactivation of the human cytomegalovirus 2.2-kilobase RNA promoter. J Virol, 70, 6955-6966.

    Scully, A. L., M. H. Sommer, R. Schwartz, and D. H. Spector. (1995). The human cytomegalovirus IE2 86-kilodalton protein interacts with an early gene promoter via site-specific DNA binding and protein-protein associations. J. Virol. 69, 6533-6540.

    Serraino, D., Piselli, P., Angeletti, C., Scuderi, M., Ippolito, G. and Capobianchi, M.R. (2005) Infection with Epstein-Barr virus and cancer: an epidemiological review. J Biol Regul Homeost Agents, 19, 63-70.

    Shamu, C.E., Story, C.M., Rapoport, T.A. and Ploegh, H.L. (1999) The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol, 147, 45-58.

    Shen, Y., Zhu, H. and Shenk, T. (1997) Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate "hit-and-run" oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci U S A, 94, 3341-3345.

    Shieh, S.-Y., Ikeda, M., Taya, Y. and Prives, C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91, 325-334.

    Sinclair, J. and Sissons, P. (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol, 87, 1763-1779.

    Sissons, J. G. P., Bain, M. M., Wills, R., and Sinclair, J. H. (2002) Latency and Reactivation of Human Cytomegalovirus. J. Infection 44, 73-77.

    Skaletskaya, A., Bartle, L.M., Chittenden, T., McCormick, A.L., Mocarski, E.S. and Goldmacher, V.S. (2001) A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A, 98, 7829-7834.

    Soderberg-Naucler, C. (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med, 259, 219-246.

    Sommer, M. H., A. L. Scully, and D. H. Spector. (1994). Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J. Virol. 68, 6223-6231.

    Spector, D.J. and Tevethia, M.J. (1994) Protein-protein interactions between human cytomegalovirus IE2-580aa and pUL84 in lytically infected cells. J Virol, 68, 7549-7553.

    Speir, E., Modali, R., Huang, E.S., Leon, M.B., Shawl, F., Finkel, T. and Epstein, S.E. (1994) Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science, 265, 391-394.

    Stasiak, P.C. and Mocarski, E.S. (1992) Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol, 66, 1050-1058.

    Stenberg, R. M., J. Fortney, S. W. Barlow, B. P. Magrane, J. A. Nelson, and P. Ghazal. (1990). Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains. J. Virol. 64, 1556-1565.

    Stenberg, R. M., Depto, A. S. Fortneins, J., Nelson, J. A. (1989). Regulated expression of early and late RNAs and proteins from human cytomegalovirus immediate-early gene region. J. Virol. 63, 2699-2708.

    Story, C.M., Furman, M.H. and Ploegh, H.L. (1999) The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc Natl Acad Sci U S A, 96, 8516-8521.

    Streblow, D.N., Soderberg-Naucler, C., Vieira, J., Smith, P., Wakabayashi, E., Ruchti, F., Mattison, K., Altschuler, Y. and Nelson, J.A. (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell, 99, 511-520.

    Syrjanen, S. (2005) Human papillomavirus (HPV) in head and neck cancer. J Clin Virol, 32 Suppl 1, S59-66.

    Szak, S.T., Mays, D. and Pietenpol, J.A. (2001) Kinetics of p53 binding to promoter sites in vivo. Mol Cell Biol, 21, 3375-3386.

    Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. (2001). Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 276, 25309-17.
    Tsai, H.L., Kou, G.H., Chen, S.C., Wu, C.W. and Lin, Y.S. (1996) Human cytomegalovirus immediate-early protein IE2 tethers a transcriptional repression domain to p53. J Biol Chem, 271, 3534-3540.

    Tsai, H.L., Kou, G.H., Tang, F.-M., Wu, C.W. and Lin, Y.S. (1997) Negative regulation of a heterologous promoter by human cytomegalovirus immediate-early protein IE2. Virology, 238, 372-379.

    Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L. and Weinberg, R.A. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107, 149-159.

    Vilchez, R.A. and Butel, J.S. (2003) Simian virus 40 and its association with human lymphomas. Curr Oncol Rep, 5, 372-379.

    Waheed, I., Chiou, C. J., Ahn, J. H., and Hayward, G. S. (1998). Binding of the human cytomegalovirus 80-kDa immediate-early protein (IE2) to minor groove A/T-rich sequences bounded by CG dinucleotides is regulated by protein oligomerization and phosphorylation. Virology 252, 235–257.

    Wahl, G.M. and Carr, A.M. (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol, 3, E277-286.

    Walker, S., Hagemeier, C., Sissons, J.G. and Sinclair, J.H. (1992) A 10-base-pair element of the human immunodeficiency virus type 1 long terminal repeat (LTR) is an absolute requirement for transactivation by the human cytomegalovirus 72-kilodalton IE1 protein but can be compensated for by other LTR regions in transactivation by the 80-kilodalton IE2 protein. J Virol, 66, 1543-1550.

    Wang, Y.C., Huang, C.F., Tung, S.F. and Lin, Y.S. (2000) Competition with TATA box-binding protein for binding to the TATA box implicated in human cytomegalovirus IE2-mediated transcriptional repression of cellular promoters. DNA Cell Biol, 19, 613-619.

    Wang, Y.F., Chen, S.C., Wu, F.Y. and Wu, C.W. (1997) The interaction between human cytomegalovirus immediate-early gene 2 (IE2) protein and heterogeneous ribonucleoprotein A1. Biochem Biophys Res Commun, 232, 590-594.

    Wang, Y.H., Tsay, Y.G., Tan, B.C., Lo, W.Y. and Lee, S.C. (2003) Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem, 278, 25568-25576.

    Wathen, M. W., and M. F. Stinski. (1982). Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. J. Virol. 41, 462-477.

    Wright, E., Bain, M., Teague, L., Murphy, J. and Sinclair, J. (2005) Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol, 86, 535-544.

    Wu, J., R. Jupp, R. M. Stenberg, J. A. Nelson, and P. Ghazal. (1993). Site-specific inhibition of RNA polymerase II preinitiation complex assembly by human cytomegalovirus IE86 protein. J. Virol. 67, 7547-7555.

    Yang, W.-M., Inouye, C., Zeng, Y., Bearss, D., and Seto, E. (1996). Transcriptional repression by YY1 is mediated by interaction with a mammalian homologue of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. U. S. A. 93, 12845-12850

    Yang, W.-M., Yao, Y.-L., Sun, J.-M., Davie, R.D., and Seto, E. (1997). Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem. 272, 28001-28007

    Yeung, K.C., Stoltzfus, C.M. and Stinski, M.F. (1993) Mutations of the human cytomegalovirus immediate-early 2 protein defines regions and amino acid motifs important in transactivation of transcription from the HIV-1 LTR promoter. Virology, 195, 786-792.

    Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174-17179

    Zhang, W., Guo, X.Y., Hu, G.Y., Liu, W.B., Shay, J.W. and Deisseroth, A.B. (1994) A temperature-sensitive mutant of human p53. Embo J, 13, 2535-2544.

    Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (1997). Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357-364

    Zhou, Y. F., M. B. Leon, M. A. Waclawiw, J. J. Popma, Z. X. Yu, T. Finkel, and S. E. Epstein. (1996). Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N. Engl. J. Med. 335, 624-630.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE