研究生: |
陳昭文 |
---|---|
論文名稱: |
旋轉圓盤內流場的動態次格點模型大渦數值模擬 Large Eddy simulation of Rotor-stator Cavity Flow using dynamic Smagrorinsky model |
指導教授: |
林昭安
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 旋轉圓盤 、次格點 、大渦數值模擬 、旋渦 、紊流強度 |
外文關鍵詞: | rotor-stator cavity, subgrid, large eddy simulation, vorticity, turbulence intensity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要的焦點是檢測動態次格點模型在大窩數值模擬上應用的效果。將採用動態次格點模型的大渦數值模擬來模擬完全發展的管流和旋轉圓盤內的流場模擬。首先,將大渦數值模擬的動態次格點模型應用在完全發展的管流模型中,在雷諾數等於180的情況下,發現所採用的動態次格點模型比Van Driest damping模型對網格的大小更敏感。所採用的動態次格點模型和Van Driest damping 模型在網格大小是96X96X96的情況下,的數值計算結果和直接數值計算(DNS)的結果非常符合。從平均流速來看,在viscous sub-layer的區域,動態次格點模型預測的效果不錯,但在中心流動的區域,所採用的動態次格點模型和Van Driest damping 模型相比較看來,有低估的現象。第二,在旋轉圓盤方面,在圓盤內流場的結構主要是由切線方向的動量油旋轉面到圓盤內部的擴散傳輸所造成的,而且在圓盤內部會產生二次流的現象。順時的切線方向的漩渦在切線方向可以看見被拉長了。在靠近旋轉面的地方,漩渦的結構比較有一置性,但是在靠近固定面的地方,相比較起來,漩渦的結構看起來就比較混亂,最後也將採用的動態次格點模型和Van Driest damoing 模型比較,兩種所使用的模型和實驗值比較起來都有不錯的效果,除了在Ekmann layers 的區域之外。
The main focus of the present work is to explore the effects of the dynamic model in large eddy simulations. Application is first applied to the fully developed channel flow with Reynolds number at . It was found that the dynamic model is more sensitive to the grid density compared to that using the van Driest damping. Both the sub-grid models with van Direst damping and the dynamic model predict the mean and turbulence quantities well by comparisons with the DNS data. The viscous sub-layer is adequately resolved by the models. However, the dynamic model does predict a lower level of turbulence intensity at the central core of the channel. For rotor-stator flow, the internal structure is induced by the diffusive transport of the tangential momentum from the rotor into interior. A secondary flow exits within the rotor-stator cavity. The instantaneous azimuthal vorticity contours show stretching and elongated structure in the tangential direction. Near the rotor, the vorticity structure is more coherent; but near the stator the vorticity structure is more chaotic. Comparisons with the available measured data, both models show good results, though there are some discrepancies across the Ekmann layers.
[1] Balaras, H. Benocci, C. and Piomeiil, U. “Finite-
Difference Computations of high Reynolds number flows
using the dynamic subgrid-scale model,” Theoretical
and Computational Fluid Dynamics (1995) 7, pp. 207-216
[2] Daily, J. W., Ernst, W. D. and Asbedian, V. V., 1964,
“Enclosed rotating disks with superposed throughflows:
mean steady and periodic unsteady characteristics of
included flow,” Report No.64, Hydrodynamic Lab.
Massachusetts Institute of Technology
[3] Deardorff, J. W., “A numerical study of three-
dimensional turbulent channel flow at large Reynolds
numbers,” Journal of Fluid Mechanics, Vol. 41, pp.
453-480.
[4] Ghosal, S., Lund, T. S., Moin, P., and Akselvoll, K.,
1995, “A dynamic localization model for large-eddy
simulation of turbulent flows,” Journal of Fluid
Mechanics, pp. 229-255.
[5] Germano, M., Piomelli, U., Moin, P. and Cabot, W. H.,
1991, “A dynamic subgrid-scale eddy viscosity model,
"Physics of Fluids A, Vol. 3, No. 7, pp. 1760-1765
[6] Germano, M., Piomelli, U., Moin, P. and Cabot, W. H.,
1991, “A dynamic subgrid-scale eddy viscosity model,
” Physics of Fluids A, Vol. 3, No. 7, pp. 1760-1765
Kim, J. and Moin, P., 1985, “Application of a
fractional-step method to incompressible Navier-Stokes
equations,” Journal of Computational Physics, Vol. 59,
pp. 308-323
[7] Kim, J., Moin, P., and Moser, R. D., 1987, “Turbulent
statistics in filly developed channel flow at low
Reynolds number,” Journal of Fluid Mechanics, Vol.177,
pp. 133.
[8] Lilly, D. K., 1992, “A Proposed modification of the
Germano subgrid-scale closure method,” Physics of
Fluids A, Vol. 4, No. 3, pp. 633-635.
[9] Lo, W., Chen, C. W. and Lin, C. A., “large eddy
simulation of rotor-stator flow”, Computational Fluid
Dynamics, 2003
[10] Morse, A. P., “Assessment of laminar-turbulent
transition in closed disk geometries” ASME Journal of
Turbomachinery, Vol. 113, No.1, 1991, pp. 131-138.
[11] Morse, A. P., “Application of a Low Reynolds number
turbulence model to high-speed rotating cavity flows”
ASME Journal of Turbomachinery, Vol. 113, No.1, 1991,
pp.98-105
[12] Moser, R. D., Kim, J., and Mansour, N. N., 1999,
“Direct numerical simulation of turbulent channel flow
up to Reτ=590,”Physics of Fluids, Vol. 11, No. 4, pp.
943-945.
[13] Piomelli, U. and Liu, J., 1995, “Large-eddy simulation
of rotating channel flows using a localized dynamic
model,” Physics of Fluids, Vol. 7, No. 4, pp. 839-848.
[14] Shyy, W. and Ebert, M. P., 2001, “Heat transfer and
fluid flow in rotating sealed cavities,” Advanced in
Heat Transfer, Vol. 35, pp. 173-248.
[15] Smagorinsky, J., 1963, “General circulation experiments
with the primitive equations,” Monthly Weather Review,
Vol. 91, pp. 99-164.
[16] Vasiliev, V. I., 2000, “On the prediction of
axisymmetric rotating flows by a one-equation turbulence
model,” Transactions of the ASME, Vol. 122, pp.264-272.
[17] Weng, P. S., “Parallel large eddy simulation of rotor-
stator cavity flow,” 國立清華大碩士論文, 2002
[18] Xu, H. and Pollard, A., 2001, “Large eddy simulation of
turbulent flow in a square annular duct,” Physics of
Fluids, Vol. 13, No. 11, pp. 3321-3337.
[19] Zang, Y., Street, R. L., and Koseff, J. R., 1993, “A
dynamic mixed subgrid-scale model and its application to
turbulent recirculating flows,” Physics of Fluids A,
Vol. 5, No. 12, pp. 3186-3196.