簡易檢索 / 詳目顯示

研究生: 吳奇錕
Chi-Kun Wu
論文名稱: 鐵酸鉍與鈷鐵氧體之複合材料電性與磁性研究
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 124
中文關鍵詞: 鐵酸鉍鈷鐵氧體複鐵式材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複鐵式材料同時具有鐵電和鐵磁性,在材料中鐵電與鐵磁性彼此會互相作用形成磁電效應。磁電現象主要的價值在於元件應用上多了一維的控制變數,可以經由電、磁、或機械方式予以監控,對元件之設計提供了許多彈性和幫助。
    本實驗利用化學共沉法製備鐵酸鉍 (BiFeO3)及鈷鐵氧體粉末(CoFe2O4)。且本實驗在製程上利用傳統的陶瓷混粉方式,除了易於控制成分比例外,也成功製作出皆為純相的鐵酸鉍及鈷鐵氧體複合式塊材。同時也製備出摻雜鑭元素鐵酸鉍粉末及與鈷鐵氧體複合式塊材。探討不同成分比例及摻雜離子對複合式塊材的電性及磁性的影響。
    本論文分為三部份來討論,首先是鐵酸鉍、摻雜鑭元素鐵酸鉍及鈷鐵氧體粉末性質作探討。接著是鐵酸鉍及鈷鐵氧體複合式塊材的電性及磁性結果。最後則是摻雜鑭元素鐵酸鉍及與鈷鐵氧體複合式塊材的電性及磁性結果。
    由結果得知,BFO/CFO的介電性質除了x=0.1外, 其餘都會有明顯空間電荷造成的現象,使得介電損失跟低頻的介電常數變大的趨勢。磁性方面,x=0.1便可以使原本順磁表現的BFO變成鐵磁性,且飽和磁化量也隨著增加。但在鐵電性質上,會由於漏電流使得曲線不容易判斷是否飽和。
    而在BLFO/CFO的系統,雖然BLFO的介電性質表現較好,但是並無法明顯改善BLFO/CFO這個系統的介電性質表現。而在磁性表現上面,也成功使得其複合式塊材擁有鐵磁性,且由於摻雜鑭元素的關係,使得矯頑場有明顯的變動。但在鐵電性質上,也是由於漏電流使得曲線不容易判斷是否飽和。


    摘要….………………………………………………...…..……………Ⅰ 目錄…….……………………………………………………………….Ⅲ 圖目錄………………………………………………………………..…Ⅷ 表目錄………………………………………………………………ⅩⅥ 第1章 前言……………………………………………………………..1 1.1簡介…………………………………………………………………..1 1.2研究動機………………………………………………………….…..2 第2章 文獻回顧…………….…………………………………………..4 2.1複鐵式材料簡介………………………………………………….…..4 2.1.1鐵電性質………………………………………………………..…..4 2.1.2鐵磁性質…………………………………………………….….…..6 2.2極化…………………………………………………………………..9 2.3介電性質……………………………………………………..….…..11 2.4漏電流機制……………………………………………………...…..12 2.5磁電效應…………………………….…………………………..…..14 2.6鐵酸鉍的特性……………...…………………………………….….18 2.6.1晶格結構……………………………...……………………….…..18 2.6.2鐵電性質…………………………………………………………..18 2.6.3鐵磁性質………………..….……………………………………...20 2.7鐵酸鈷的特性…………………………………….……………..…..20 2.7.1晶格結構………………………………………………...…….…..20 2.7.2鐵磁性質………………………………….…………………...…..21 2.8粉末合成法……………………………………….………….….…..21 第3章 實驗流程………………………………….………………..…..31 3.1鐵酸鉍粉末與塊材製備………………………………………...…..31 3.1.1粉末之製作………………………………………………………..31 3.1.2煆燒………………………………………………………..….…..32 3.1.3試片壓製…………………………………………………..….…..32 3.1.4燒結…………………………………………………………...…..32 3.2 鐵酸鉍摻雜鑭元素粉末與塊材之製備……………………….…..33 3.3鐵酸鈷粉末與塊材製備………………………………………..…..33 3.4 混粉粉末選擇與試片製備…………………………………….…..33 3.5實驗量測………………………………………………………...…..34 3.5.1熱差/熱重(TG/DTA)熱分析…………………………………..…..34 3.5.2密度量測……………………………………………………….….34 3.5.3晶體結構…………………………………………………………..35 3.5.4微觀結構…………….…………………………………………….35 3.5.5介電常數及散逸因子與阻抗分析………………………...….…..36 3.5.6漏電流量測…………………………………………………....…..37 3.5.7 P-E極化曲線………………………………………………….…..37 3.5.8 M-H磁滯曲線…………….………………………………………37 第4章 實驗結果…………….………………………………………….43 4.1 BiFeO3塊材性質…………….……………………………………...43 4.1.1 TG/DTA熱分析…………………………………………...….…..43 4.1.2 X-ray繞射分析……………………………………………..….…43 4.1.3燒結密度分析………………………………………………….….44 4.1.4 SEM分析…………….…………………………………………...44 4.1.5低頻介電常數及散逸因子分析……………………………....…..44 4.1.6漏電流性質………………………………………………………..45 4.1.7變溫介電常數及散逸因子分析……………………...……….…..45 4.1.8磁滯曲線分析………………………………………………….….46 4.2不同鑭(La)摻雜量對BFO影響………………………..……….….46 4.2.1 TG/DTA熱分析…………………………………………...….…..47 4.2.2 X-ray繞射分析……………………………………………….…..47 4.2.3 燒結溫度分析…………………………………………….….…..48 4.2.4 SEM分析……………………………………………………....…48 4.2.5低頻介電常數及散逸因子分析……………………………….….49 4.2.6漏電流性質…………………………………………………....…..49 4.2.7變溫介電常數及散逸因子分析…………………………...….…..50 4.2.8磁滯曲線分析………………………………………………....…..51 4.3 CoFe2O4塊材性質……………………………………………….….51 4.3.1 TG/DTA熱分析……………………………………………….….51 4.3.2 X-ray繞射分析……………………………………………….…..52 4.3.3低頻介電常數及散逸因子分析……………………………....…..52 4.3.4漏電流性質………………………………….……………..….…..52 4.3.5磁滯曲線分析………………………………………………....…..53 5.1. BiFeO3/CoFe2O4塊材性質…………………………………….…..53 5.1.1 X-ray繞射分析……………………………………………….…..53 5.1.2燒結密度分析……………………………………………………..54 5.1.3 SEM分析……………………………………………………...….54 5.1.4低頻介電常數及散逸因子分析………………………………..…54 5.1.5漏電流性質…………………………………………………….….55 5.1.6變溫介電常數及散逸因子分析…………………………...….…..56 5.1.7變溫阻抗分析……………………………………………………..56 5.1.8磁滯曲線分析…………….……………………………………….57 5.1.9鐵電曲線分析…………….……………………………………….57 6.1 Bi1-xLaxFeO3/CoFe2O4塊材性質………………………………..….58 6.1.1 X-ray繞射分析…………………………………………….….….58 6.1.2燒結密度分析………………………………………….……….…58 6.1.3 SEM分析…………...............................................................….…58 6.1.4低頻介電常數及散逸因子分析……………………………….….59 6.1.5漏電流性質………………………………………………….….…59 6.1.6變溫介電常數及散逸因子分析……………………………….….60 6.1.7變溫阻抗分析……………………………………………….….…60 6.1.8磁滯曲線分析………………………………………………….…61 6.1.9鐵電曲線分析………………………………………………….…61 第五章 結論……………………………………………………….….117 第六章 參考文獻…………………………………………………..…119

    [1] G. Burns, Solid state physics, (Academic Press, New York, 1985).
    [2] W. D. Callister, Jr., Materials Science and Engineering, 4th ed. (Wiely, New York, 1985).
    [3] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials, (Oxford University Press, New York, 2001).
    [4] B. H. Park, B. S. Kang, S. D. Bu, T. W Noh, J. Lee and W. Jo, “Lanthanum – substituted bismuth tianate for use in Non-volatile memories,” Nature., 401 [6754] 682-684 (1999).
    [5] C. Kittel, Introduction to solid state physics, 7th ed. (John Wiley &Sons, New York, 1996).
    [6] 張煦,李學養 磁性物理學 (聯經,台北市,1982).
    [7] M. Barsoum, Fundamentals of ceramics, (McGraw Hill, New York, 1994).
    [8] A. J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications,” p52-55 and p61-62 (1990).
    [9] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics,” Wiley (1975).
    [10] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky barrier effects in the electronic conduction of sol–gel derived lead zirconate titanate thin film capacitors,” J. Appl. Phys. 84 [9] 5005-5011 (1998).
    [11] I. Stolichnov and A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films,” J. Appl. Phys., 84 [6] 3216-3225 (1998)
    [12] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides,” Phys. Rev. B, 66 [2] 134402 (2002)
    [13] M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D-Appl. Phys. 38 [8] R123-R152 (2005).
    [14] I. E. Dzyaloshinskii “On the magnetoelectric effect in antiferromagnets,” Sov. Phys. -JETP 10 628 (1959)
    [15]D. N. Astrov, “Magnetoclcctric Effcct in Chromium Oxide,” Sov. Phys. –JETP 11 708 (1960)
    [16]G. T. Rado and V. J. Folen, “Observation of thc Magnctically induced magenctoclcctric effcct and Evidence for Antiferro-magnetic domains,” Phys. Rev. Lett., 7 310 (1961)
    [17] C. W. Nan, “ Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases,” Phys. Rev. B., 50 [9] 6082-6088 (1994).
    [18] H. Zheng, J. Wang, “Multiferroic BaTiO3-CoFe2O4 nanostructures,” SCIENCE., 303 [5658] 661-663 (2004)
    [19] R. P. Mahajan, K. K. Patankar, “Dielectric properties and electrical conduction of nickel ferrite-barium titanate composites,” IndianJ. PureAppl. Phys. 38 [8] 615-620 (2000)
    [20] J. Ryu, A.V. Carazo, K. Chino, H.E. Kim, “Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate / Ni-Ferrite Particulate Composites,” Journal of Electroceramics, 7, 17-21 (2001)
    [21] J.P. Zhou, H.C. He, Z. Shi, G. Liu, C.W. Nan, “Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3/CoFe2O4 composite ceramics,” JOURNAL OF APPLIED PHYSICS, 100 [9] 094106 (2006)
    [22] K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, “Electromechanical coefficients of magnetoelectric PZT-CoFe2O4 composite,” MODERN PHYSICS LETTERS B, 14, [17-18], 663-674, (2000)
    [23] F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S.Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, R. Ramesh, “Electric field-induced magnetization switching in epitaxial columnar nanostructures,” NANO LETTERS, 5 [9], 1793-1796, (2005)
    [24] X.M. Liu, S.Y. Fu, C.J. Huang, “Synthesis and magnetic characterization of novel CoFe2O4-BiFeO3 nanocomposites,” MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 121 [3], 255-260, (2005)
    [25] S. X. Dong, J. F. Li, and D. Viehland, “Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes,” J. Appl. Phys. 95 [5] 2625-2630 (2004)
    [26] S. X. Dong, J. F. Li, and D. Viehland, “A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite,” J. Appl. Phys. 85 [16] 3534-3536 (2004)
    [27] F. Kubel, and H. Schmid, “Structrue of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3,” ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE. 46 698-702 (1990).
    [28]P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, “Temperature-dependence of the crystal and magnetic-structure of BiFeO3,” JOURNAL OF PHYSICS C-SOLID STATE PHYSICS 13 [10] 1931-1940 (1980).
    [29] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures,” Science 299 [5613] 1719-1722 (2003)
    [30] J.R.Teague,R.G.erson,and W.J.James, “Dielectric hysteresis in single crystal BiFeO3,” Solid State Comm. 8 1073 (1970)
    [31] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions,” Appl. Phys. Lett. 84 [25] 5261-5263 (2004)
    [32] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,” Appl. Phys. Lett. 84 [10] 1731-1733 (2004)
    [33] M. M. Kumar and V. R. Palkar, “Ferroelectricity in a pure BiFeO3 ceramic,” Apl. Phys. Lett. 76 [19] 2764-2766 (2000).
    [34] M. M. Kumar and V. R. Palkar, “Dielectric and Impedance Studies on BiFeO3-BaTiO3 Solid Solutions,” Apl. Phys. Lett. 165 [1] 317-326 (1998).
    [35] Y. E. Roginskaya, Y. Y. Tomashpol’skii, Y. N. Venevtsev, V. M. Petrov, and G. S. Zhdanov, “The Nature of the Dielectric and Magnetic Properties of BiFeO3,” Soviet Phys. JETP., 44, 1418, 1966.
    [36] R. T. Smith, G. D. Achenbach, R. Gerson, and W. J. James, “Dielectric Properties of Solid Solution of BiFeO3 with Pb(Ti, Zr)O3 at High Temperature and High Frequency,” J. Appl. Phys., 39, 70, (1968).
    [37] B Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order,” Phys. Rev. B 69 [6] 064114 (2004)
    [38] M.Grigorova , H.J. Blythe , V. Blaskov , V. Rusanov , V. Petkov , V. Masheva , D.Nihtianova , Ll.M. Martinez , J.S. Munoz , M. Mikhov, “Magnetic properties and Mossbauer spectra of nanosized CoFe2O4 powder,” Journal of Magnetism and Magnetic Materials, 183, 163, (1998)
    [39] Y.I. Kim, D. Kim, C.S. Lee, “Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method,” Physica B, 337, 42-51, (2003)
    [40] Y. Qu, H. Yang, N. Yang, H. Zhu, G. Zou, “The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles,” Materials Letters, 60, 3548-3552, (2006)
    [41] Y. Arai, Chemistry of Powder Production, Chapman and Hall Inc. London (1991)
    [42] 劉依佩, 碩士論文, 化學共沉法製備掺雜鑭及鐠之鐵酸鉍陶磁性質探討, 2006
    [43] 劉增勳, 碩士論文, 以化學法製備純及掺雜鑭鉻鐵酸鉍陶瓷之性質, 2006
    [44] 劉純宇, 碩士論文, BiFeO3鐵電薄膜之製備與特性研究, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE