簡易檢索 / 詳目顯示

研究生: 張凱評
Chang, Kai-ping
論文名稱: The investigation of sorption performance of mesoporous SBA-15 and its metal modified composites
SBA-15以及金屬改質SBA-15複合材料之吸附研究
指導教授: 王竹方
Chu-fang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: SBA-15TiSBA-15CaO/SBA-15
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為研究中孔洞材料SBA-15對水中汙染物的吸附特性,將Ti與Ca分別改質於SBA-15基材上,以增加傳統SBA-15純矽材料的應用範圍和能力。研究過程中,首先以共沉澱方法合成新穎的TiSBA-15材料,結合SBA-15的孔洞特性以及Ti的光催化特性,使TiSBA-15同時具備吸附及光催化降解污染物的能力;其次,將Ca離子以含浸法披覆於SBA-15基材上,經由鍛燒形成CaO/SBA-15複合材料,使SBA-15具備吸附CO2的能力。本實驗使用XRD、BET、SEM/EDX、TEM與ICP-MS等儀器鑑定SBA-15以及其複合材料的基本特性。在性能測試方面,以陽離子型分子、陰離子型分子和中性分子進行SBA-15的吸附研究;以亞甲基藍染料進行TiSBA-15的吸附與光催化再生能力的實驗;最後探討CaO/SBA-15在高溫環境下吸附CO2的可行性。實驗結果顯示,SBA-15對於陽離子型分子有明顯的吸附能力,對於陰離子型分子和中性分子則否。SBA-15的吸附行為可用Langmuir、Freundlich和pseudo-second order模式進行模擬。亞甲基藍染料可有效的被TiSBA-15吸附,且經由適當的光催化程序,可以證明TiSBA-15具有同時催化與礦化污染物;以及再生TiSBA-15的功能。高溫吸附CO2實驗證明,CaO/SBA-15在700℃有最佳的CO2捕捉能力,在910℃能將CO2脫附,其最大吸附容量可達43wt%。經20次吸脫附循環實驗後之CO2捕捉效率仍可維持85%以上,顯示CaO/SBA-15為一極具潛力的高溫CO2捕捉複合材料。


    The purpose of this study is to investigate the adsorptive properties of pollutants on SBA-15 in solution. Titanium (Ti) and Calcium (Ca) were modified on SBA-15 supports in order to improve the applications of traditional SBA-15 materials. A novel Ti-containing SBA-15 (TiSBA-15) material using co-precipitation method combines the adsorptive capability of mesoporous SBA-15 and photocatalytic ability of Ti. This combination makes TiSBA-15 a potential material to adsorb the pollutant and then degrade it photocatalytically. CaO/SBA-15 composite was synthesized by impregnation method using calcium acetate as the calcium precursors and then calcined to form CaO on the surface of SBA-15. The modification of Ca on SBA-15 leads into the ability to absorb CO2.
    All prepared materials were characterized by powder X-ray diffraction patterns (XRD), nitrogen sorption isotherms techniques, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), transmission electron microscopy (TEM), and inductively coupled plasma-mass spectroscopy (ICP-MS). In terms of adsorption properties, the performance was examined by the adsorption of dyes on prepared materials. It is concluded that SBA-15 exhibits an excellent adsorptive capability of cationic molecules but almost no adsorption of anionic and neutral molecules. Langmuir model, Freundlich model, and pseudo-second-order kinetics were well-fitted in the simulation of the adsorption behavior of dyes on prepared materials. The photodegradation of MB and TOC analysis on solid composites were used to evaluate the catalytical performance of TiSBA-15. An adsorption and photocatalysis process cycle test was used to estimate the regeneration performance of TiSBA-15. The results indicate that TiSBA-15 can be an effective material to reduce organic pollutants in solution. The CO2 adsorption performance on CaO/SBA-15 was evaluated by TG analysis. The composite is considered as a potential high temperature CO2 adsorbent with an over 85% uptake ability after 20 cyclic runs.

    Content Index 中文摘要.......................................................................................................................I Abstract .......................................................................................................................II 謝誌..............................................................................................................................IV Content Index ..............................................................................................................V Figure Index ...........................................................................................................VIII Table Index................................................................................................................... Chapter 1 Introduction....……...………………………………………………….....1 Chapter 2 Literature review ...…...…………………....................……………….....5 2-1 Introduction of porous material..................................................................5 2-1-1 Synthesis of ordered mesoporous silica materials.........................6 2-2 Introduction of Adsorption models………...…………….……………...12 2-2-1 Adsorption Isotherm…...…………………………………....…...13 2-2-2 Kinetic Sorption Mechanisms………………….………………...17 2-2-3 Thermodynamics........…........................................……………...19 2-3 Introduction of TiO2 photocatalysis………………..…………………....20 2-3-1 Mechanism of TiO2-Photocatalyzed Degradation …………...21 2-3-2 Titanium supported on porous silica and catalytic studies….…23 2-4 CaO/SBA-15 for capture CO2…………………………..………………..26 Chapter 3 Experimental…..……….…...............................................……………...29 3-1 Chemical reagents and Instruments……………..…………………........29 3-2 Synthesis…………….…………………………………………………...32 3-2-1 Synthesis of SBA-15 ...….............................……………………...32 3-2-2 Synthesis of TiSBA-15 ......………..........................……………...33 3-2-3 Synthesis of CaO/SBA-15 …………………………..…………...34 3-3 Characterization of materials ...……………………………………..…..35 3-3-1 Powder X-Ray Diffraction ……………….……………………...35 3-3-2 Nitrogen adsorption-desorption isotherm measurements…...36 3-3-4 SEM and TEM…………………………………...……………….37 3-3-5 IPC-MS ....……………………………………….....………..…..37 3-3-6 Zeta potential .…………………………….……………………...38 3-4 Experimental procedure ..…….…………………………………….........38 3-4-1 Adsorption experimental..………………….………………….…38 3-4-2 TOC mineralization……………………………………………..39 3-4-3 CO2 adsorption………………………………………………......40 Chapter 4 Results and discussion .………………….……………………………...41 4-1 Characterization and adsorption performance of SBA-15 …………....41 4-1-1 Properties of prepared SBA-15 .…...……………….…………...41 4-1-2 Adsorption of organic molecules on SBA-15…………….……...46 4-1-2-1 Adsorption isotherm of organic molecules………………..47 4-1-2-2 Model studies of SBA-15: adsorption isotherms, sorption kinetics, and thermodynamics…..............................……..48 4-2 Characterization and photocatalytic performance of TiSBA-15……....58 4-2-1 Properties of TiSBA-15……………………………..………........58 4-2-2 Adsorption and regeneration of TiSBA-15…………………….67 4-3 Characterization and CO2 capture of CaO/SBA-15……………………76 4-3-1 Properties of CaO/SBA-15………………………..……………...76 4-3-2 CO2 capture tests by CaO/SBA-15…………………………….80 Chapter 5 Conclusion ……........…………….....................………………………...83 Reference ..................………...........................……………………………………...85

    Reference
    Antonelli D. M.; J. Y. Ying; Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism, Angew. Chem. Int. Ed. 1996, 35, 426-430.
    Aihara M.; T. Nagai; J. Matsushita; Y. Negishi; H. Ohya; Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction, Appl. Energy 2001, 69, 225.
    Anev P. T; T. J. Pinnavaia; A neutral templating route to mesoporous molecular sieves, Science 1995, 267, 865.
    Aguado M. A.; J. Gimenez; S. Cervera-March; Continuous photocatalytic treatment of Cr(Ⅵ) effluents with semiconductor powders, Chem. Eng. Commun. 1991, 104, 71-85.
    Antonelli D. M.; J. Y. Ying; Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves, Chem. Mater. 1996, 8, 874.
    Bard A. J.; Design of semiconductor photoelectrochemical systems for solar energy conversion. J. Phys. Chem. 1982, 86, 172-177.
    Brunauer S.; L. S. Deming; W. E. Deming; E. K. Teller; A theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc. 1940, 62, 1723–1732.
    Be’rube’ F.; S. Kaliaguine; Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials, Micropor. Mesopor. Mater. 2008, 115(C), 469-479.
    Bagshaw S. A; E. Prouzet; T. J. Pinnavaia; Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants, Science 1995, 269, 1242.
    Bhatia S. K.; D. D. Perlmutter; Effect of the product layer on the kinetics of the carbon dioxide-lime reaction, AIChE J. 1983, 29, 79.
    Belhekar A. A.; S. V. Awate; R. Anand; Photocatalytic activity of titania modified mesoporous silica for pollution control, Catal. Commun. 2002, 3, 453.
    Cheng C. F.; H. Y. He; W. Z. Zhou; J. Klinowski; Crystal morphology supports the liquid-crystal formation mechanism for the mesoporous molecular-sieve MCM-41, Chem. Phys. Letters 1995, 244(1-2), 117-120.
    Cheng C. F.; Z. H. Luan; J. Klinowski; The role of surfactant micelles in the synthesis of the mesoporous molecular-sieve MCM-41, Langmuir 1995, 11(A), 2815-2819.
    Cai Q.; Z. S. Luo; W. Q. Pang; Y. W. Fan; X. H. Chen; F. Z. Cui; Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium, Chem. Mater. 2001, 13(2), 258-263.
    Chiker F.; J. P. Nogier; F. Launay; J. L. Bonardet; New Ti-SBA mesoporous solids functionnalized under gas phase conditions: characterisation and application to selective oxidation of alkenes, Appl. Catal. A 2003, 243, 309.
    Dogan K.; T. Mustafa; A. Eda; T. Sema; F. Ayegl; Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite, J. Chem. Eng. Data 2007, 52 (B), 1615-1620.
    Fu X.; L. A. Clark; Q. Yang; M. A. Anderson; Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol. 1996, 30, 647.
    Grieken R.; J. Aguado; M. J. Lo´pez-Mun˜oz; J. Maruga´n; Synthesis of size-controlled silica-supported TiO2 photocatalysts, J. Photochem. & Photobio. A: Chem. 2002, 148, 315.
    Gupta H.; L. S. Fan; Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Ind. Eng. Chem. Res. 2002, 41, 4035-4042.
    Gupta H.; L. S. Fan; Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas, Ind. Eng. Chem. Res. 2002, 41, 4035.
    Gerente C.; V. K. C. Lee; P. Le Cloirec; G. McKay; Aplication of Chitosan for the Removal of Metals from Wastewaters by Adsorption Mechanisms and Models Review, Environ. Sci. & Tech. 2007, 37, 41–127.
    Ho Y. S.; G. McKay; The sorption of Lead(II) ions on Peat, Water Res. 1999, 33(2):,578–584.
    Hsien Y. H.; C. F. Chang; Y. H. Chen; S. Cheng; Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves, Appl. Catal. B 2001, 31, 241.
    Hughes R. W.; D. Y. Lu; E. J. Anthony; A. Macchi; Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents, Fuel Process. Technol. 2005, 86, 1523.
    Hoshikawa T.; T. Ikebe; M. Yamada; R. Kikuchi; K. Eguchi; Preparation of silica-modified TiO2 and application to dye-sensitized solar cells, J. Photochem. Photobio. A: Chem. 2006, 184, 78
    Jime’nez-Jime’nez J.; M. Rubio-Alonso; D. Eliche-Quesada; E. Rodriguez Castellon; A. Jime’ne-Lopez; Synthesis and characterization of mixed silica/zirconia and silica/titania porous phospate heterostructures (PPH), J. phys. chem. 2006, 67, 1007.
    Ka Y. H.; G. McKay; K. L. Yeung; Selective Adsorbents from Ordered Mesoporous Silica, Langmuir 2003, 19 (A), 3019-3024.
    kresge C. T.; M. E. Leonowicz; W. J. Roth; J. C. Vartuli; J. S. Beck; Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature 1992, 359, 710-712.
    Kolovos N.; A. Georgakopoulos; A. Filippidis; C. Kavouridis; Utilization of lignite reserves and simultaneous improvement of dust emissions and operation efficiency of a power plant by controlling the calcium (total and free) content of the fed lignite, application on the agios dimitrios power plant, ptolemais, greece, Energy and Fuels 2002, 16, 1516-1522.
    Li G.; X. S. Zhao; Characterization and Photocatalytic Properties of Titanium-ContainingMesoporous SBA-15, Ind. Eng. Chem. Res. 2006, 45, 3569-3573.
    Lain C. J.; C. C. Wang; C. K. Lee; Adsorption of basic dyes onto MCM-41, Chemosphere 2006, 64, 1920-1928.
    Li Z. S.; N. S. Cai; Y. Y. Haung’ Effectofpreparationtemperatureonthecyclic CO2 capture andmultiplecarbonation–calcinationcyclesforanewCa-based CO2 sorbent, Ind. Eng. Chem. Res. 2006, 45, 1911–1917.
    Lin H. P.; C. Y. Mou; Structural and morphological control of cationic surfactant-templated mesoporous silica, Acc. Chem. Res. 2002, 35, 927.
    Landau M. V.; L. Vradman; X. Wang; L. Titelman; High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: preparation, texture and stability, Micropor. Mesopor. Mater. 2005, 78, 117.
    Luan Z.; J. Y. Bae; L. Kevan; Photoionization of N-alkylphenothiazines in tianosilicate mesoporous TiSBA-15 molecular sieves, Micropor. Mesopor. Mater. 2001, 48, 189.
    McKay G.; Adsorption of dyestuffs from aqueous solutions with activated carbon I: Equilibrium and batch contact-time studies, J. Chem. Tech. Biotech. 1982, 32, 759-772.
    Nosaka Y.; M. A. J. Fox; Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen, Phys. Chem 1988, 88, 1893-1897.
    Raman N.; M. Anderson; C. Brinker; Template-based approaches to the preparation of amorphous, nanoporous silicas, Chem. Mater. 1996, 8, 1682.
    Ruthven D. M.; Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York 1984, 29.
    Readman J. E.; R. Blom; The use of in situ powder X-ray diffraction in the investigation of dolomite as a potential reversible hightemperature CO2 sorbent, Phys. Chem. Chem. Phys. 2005, 7, 1214.
    Srivastava R.; D. Srinivas; P. Ratnasamy; CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts, J. Cataly. 2005, 233, 1–15.
    Silaban A; P. Harrison; High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO (s) and CO2 (g), Chem. Eng. Comm. 1995, 137, 177–90.
    Shimizu T.; Hirama T.; Hosoda H.; A twin fluid-bed reactor for removal of CO2 from combustion processes, Chem. Eng. Res. Des. 1999, 77, 62–8.
    Silaban A.; D. P. Harrison; High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2(g), Chem. Eng. Commun. 1995, 137, 177.
    Sahel K.; N. Perol; H. Chermette; C. Bordes; Z. Derriche; C. Guillard; Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of adsorption, kinetic of decolorization and mineralization, Appl. Catal. B: Environ. 2007, 77, 100–109.
    Smith J. M.; Chemical engineering kinetics, 2nd ed., Donnelley and Sons Company 1981, New York.
    Stenzel M. H.; Remove organics by activated carbon adsorption, Chem.Eng. 1993, 89(4), 36-43.
    Shaobin W.; L. Huiting; X. Longya; Application of zeolite MCM-22 for basic dye removal from wasterwater, J. of Collo. Inter. Sci. 2006, 295, 71-78.
    Tuel A.; L. G. Hubert-Pfalzgraf; Nanometric monodispersed titanium oxide particles on mesoporous silica: synthesis, characterization, and catalytic activity in oxidation reactions in the liquid phase, J. Catal. 2003, 217, 343.
    Tanev P. T.; T. J. Pinnavaia; A neutral templating route to mesoporous molecular-sieves, Science 1995, 267, 865.
    Vartuli J. C.; S. S. Shih; C. T. Kresge; Potential applications for M41S type mesoporous molecular sieves, Micropor. Mesopor. Mater. 1998, 117, 13-21.
    Vinu A.; P. Srinivasu; M. Miyahara; K. Ariga; Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content, J. Phys. Chem. B 2006, 110, 801-806.
    Won Y. J.; Synthesis of Ti-containing SBA-15 materials and studies on their photocatalytic decomposition of orange II, Cata. Today 2008, 131, 437–443.
    Yuan X.; Z. S. Ping; X. Wei; C. H. You; D. X. Dong; L. X. Mei; Y. Z. Feng; Aqueous dye adsorption on ordered mesoporous carbons, J. Collo. Inter. Sci 2007, 310, 83–89.
    Yamashita H.; S. Kawasaki; Y. Ichihashi; M. Harada; M. Takeuchi; M. Anpo; Characterization of titanium–silicon binary oxide catalysts prepared by the sol–gel method and their photocatalytic reactivity for the liquidphase oxidation of 1-octanol, J. Phys. Chem. B 1998, 102, 5870.
    Yu J. C.; J. G. Yu; J. C. Zhao; Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment, Appl. Catal. B: Environ. 2002, 36, 31.
    Zhang X.; F. Zhang; K. Y. Chan; Synthesis of titania–silica mixed oxide mesoporous materials, characterization and photocatalytic properties, Appl. Catal. A 2005, 284, 193.
    Zhu Y.; L. Zhang; W. Yao; L. Cao; The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol–gel method with TiCl4 as a precursor, Appl. Surf. Sci. 2000, 158, 32.
    Zhao D. Y.; Q. S. Huo; J. L. Feng; B. F. Chmelka; G. D. Stucky; Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 1998, 120(24), 143 6024-6036.
    Zafiriou O. C.; Tritium deposition in pine trees and soil from atmospheric releases of molecular tritium, Envi. Sci. Technol. 1984, 18, 358-361.
    Zhao D.; J. Feng; Q. Huo; N. Melosh; G. H. Fredrickson; B. F. Chmelka; G. D. Stucky; Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 1998, 279, 548-552.
    邱建洋,氣體吸附運用在中孔洞二氧化矽分子篩的結構鑑定,清華大學碩士論文,2004。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE