研究生: |
林緯祥 Lin, Wei-Hsiang |
---|---|
論文名稱: |
二氧化鈦/二氧化釕奈米柱之多層次結構和其光催化水分解的應用 TiO2 / Nanorod RuO2 Hierarchical Structure and Its Application in Photoelectrochemical Water Splitting |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
裘性天
Hsin-Tien Chiu 徐文光 Wen-Kuang Hsu 甘炯耀 Jon-Yiew Gan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 光電化學 、水分解 、二氧化鈦 、二氧化釕 、奈米柱 、多層次結構 |
外文關鍵詞: | photoelectrochemical, water splitting, titanium dioxides, ruthenium dioxides, nanorods, hierarchical structure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多層次的二氧化鈦/二氧化釕奈米柱複合結構被合成出來:利用射頻濺鍍在矽基材上長出二氧化釕奈米柱,接這在其上用旋轉塗佈法塗佈無晶相的二氧化鈦層,在乙酸液熱反應底下,這層無晶相層會轉變成特殊形貌的鈦酸鹽類,再經過700 oC持溫1小時的退火動作,鈦酸鹽類會轉變成anatase相的二氧化鈦,並且不改變形貌。我們可以得到亞微米顆粒、花狀和奈米顆粒三種不同形貌的二氧化鈦。
不同型貌的多層次二氧化鈦/二氧化釕奈米柱複合結構可以當作在光電化學水分解的光陽極,所使用的電解液為1 M KOH,在氙燈照射下,電壓0.2 V vs.Ag/AgCl時,花狀二氧化鈦可以測到的光電流增益為2.20 mA/cm2,二氧化鈦奈米顆粒可測到1.16 mA/cm2,二氧化鈦亞微米顆粒可測到1.48 mA/cm2。
但是,量測不同厚度的花狀二氧化鈦二氧化釕奈米柱複合結構的光電流增益,當厚度大於6 μm,光電流增益和穩定性會有明顯的下降,因此我們推測最佳厚度可能在2 μm附近,花狀二氧化鈦在三個形貌中表現最好。在光電化學水分解中,多層次二氧化鈦/二氧化釕奈米柱是依很有潛力的光陽極。
Hierarchical TiO2 / RuO2 nanorod heterostructure was synthesized. Amorphous TiO2 layer was firstly spin-coated onto RuO2 nanorods on Si wafer prepared by RF sputtering. The amorphous layer was transformed to titanate with special morphology under acetic acid solvothermal reaction. After heating at 700 oC for 1 h, the titanate further transfer to anatase without morphology change. Three kinds of morphology of TiO2 were synthesized, including submicron-particle, flower-like, and nanoparticles.
Furthermore, the varied-morphologied TiO2 / RuO2 nanorods heterostructure was used as working electrode for photoelectrochemical water splitting in 1 M KOH aqueous solution. It showed larger photocurrent enhancement (2.20 mA/cm2 at 0.2 V vs Ag/AgCl) compared with that of TiO2 nanoparticles / RuO2 nanorods (1.16 mA/cm2 at 0.2 V vs Ag/AgCl) and that of TiO2 submicron-particles (1.48 mA/cm2 at 0.2 V vs Ag/AgCl) under the irradiation of a Xe lamp.
However, the photocurrent enhancement and photostability of TiO2 / RuO2 nanorod heterostructure with varied thickness drop largely when the thickness of the sample exceeds 6 μm. From the outcome above, the optimum thickness is around 2 μm, and the performance of flower-like TiO2 is the best among the three morphologies. These suggest the hierarchical heterostructure that TiO2 flower / RuO2 nanorods can be employed as a potential photoanode for photoelectrochemical water splitting.
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
(2) Abe, R. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2010, 11, 179.
(3) van de Krol, R.; Liang, Y.; Schoonman, J. Journal of Materials Chemistry 2008, 18, 2311.
(4) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Journal of the American Chemical Society 2001, 123, 10639.
(5) Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Grätzel, M. The Journal of Physical Chemistry C 2008, 113, 772.
(6) Wang, H.; Deutsch, T.; Turner, J. A. Journal of The Electrochemical Society 2008, 155, F91.
(7) Gratzel, M. Nature 2001, 414, 338.
(8) Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, 104.
(9) Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano letters 2008, 8, 3781.
(10) Tang, J. W.; Durrant, J. R.; Klug, D. R. Journal of the American Chemical Society 2008, 130, 13885.
(11) Zhang, Z.; Yang, X.; Hedhili, M. N.; Ahmed, E.; Shi, L.; Wang, P. ACS applied materials & interfaces 2014, 6, 691.
(12) Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. Chemical communications 2001, 2416.
(13) Kato, H.; Kudo, A. Chemical Physics Letters 1998, 295, 487.
(14) Abdi, F. F.; Han, L.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Nature Communications 2013, 4.
(15) Osterloh, F. E. Chemistry of Materials 2008, 20, 35.
(16) Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications; John Wiley & Sons: INC.NewYorke, 2001.
(17) Alam, M. J.; Cameron, D. C. J. Sol-Gel Sci. Technol. 2002, 25, 137.
(18) Ismail, A. A.; Bahnemann, D. W. Journal of Materials Chemistry 2011, 21, 11686.
(19) Beyers, E.; Cool, P.; Vansant, E. F. J. Phys. Chem. B 2005, 109, 10081.
(20) Wang, X. C.; Yu, J. C.; Hou, Y. D.; Fu, X. Z. Advanced Materials 2005, 17, 99.
(21) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Journal of the American Chemical Society 2009, 131, 4078.
(22) Liu, S.; Huang, K. Solar Energy Materials and Solar Cells 2005, 85, 125.
(23) Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Journal of the American Chemical Society 2007, 129, 11569.
(24) Zhang, Z.; Zhang, L.; Hedhili, M. N.; Zhang, H.; Wang, P. Nano letters 2013, 13, 14.
(25) Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. Nano letters 2011, 11, 4978.
(26) Chen, H.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B. J. Phys. Chem. C 2008, 112, 9285.
(27) Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M. Nano letters 2012, 12, 5014.
(28) Wang, F.; Seo, J. H.; Li, Z.; Kvit, A. V.; Ma, Z.; Wang, X. ACS applied materials & interfaces 2014, 6, 1288.
(29) Mattheiss, L. Physical Review B 1976, 13, 2433.
(30) Marcus, S. M.; Butler, S. R. Physics Letters A 1968, 26, 518.
(31) Slivka, R. T.; Langenberg, D. N. Physics Letters A 1968, 28, 169.
(32) Daniels, R. R.; Margaritondo, G.; Georg, C. A.; Levy, F. Physical Review B 1984, 29, 1813.
(33) Abayev, I.; Zaban, A.; Fabregat-Santiago, F.; Bisquert, J. Phys. Status Solidi A-Appl. Res. 2003, 196, R4.
(34) Rogers, D. B.; Shannon, R. D.; Sleight, A. W.; Gillson, J. L. Inorg. Chem. 1969, 8, 841.
(35) Ryden, W.; Lawson, A.; Sartain, C. Physical Review B 1970, 1, 1494.
(36) Holcomb, D. F. American Journal of Physics 1967, 35, 547.
(37) SCHAFER,H - CHEMICAL TRANSPORT REACTIONS, 1966; Vol. 4.
(38) Kaga, Y.; Abe, Y.; Kawamura, M.; Sasaki, K. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1999, 38, 3689.
(39) Vadimsky, R. G.; Frankenthal, R. P.; Thompson, D. E. Journal of the Electrochemical Society 1979, 126, 2017.
(40) Kötz, R.; Stucki, S. Electrochimica Acta 1986, 31, 1311.
(41) Arikado, T.; Iwakura, C.; Tamura, H. Electrochimica Acta 1977, 22, 513.
(42) Arikado, T.; Iwakura, C.; Tamura, H. Electrochimica Acta 1978, 23, 799.
(43) Green, M. L.; Gross, M. E.; Papa, L. E.; Schnoes, K. J.; Brasen, D. Journal of the Electrochemical Society 1985, 132, 2677.
(44) Fog, A.; Buck, R. P. Sensors and Actuators 1984, 5, 137.
(45) Chou, J.-C.; Chen, Y.-L.; Yang, M.-H.; Chen, Y.-Z.; Lai, C.-C.; Chiu, H.-T.; Lee, C.-Y.; Chueh, Y.-L.; Gan, J.-Y. Journal of Materials Chemistry A 2013, 1, 8753.
(46) Ryan, J. V.; Berry, A. D.; Anderson, M. L.; Long, J. W.; Stroud, R. M.; Cepak, V. M.; Browning, V. M.; Rolison, D. R.; Merzbacher, C. I. Nature 2000, 406, 169.
(47) Satishkumar, B. C.; Govindaraj, A.; Nath, M.; Rao, C. N. R. Journal of Materials Chemistry 2000, 10, 2115.
(48) Hsieh, C.-S.; Tsai, D.-S.; Chen, R.-S.; Huang, Y.-S. Applied Physics Letters 2004, 85, 3860.
(49) Lin, Y.-T.; Chen, C.-Y.; Hsiung, C.-P.; Cheng, K.-W.; Gan, J.-Y. Applied Physics Letters 2006, 89, 063123.
(50) Guglielmi, M.; Colombo, P.; Rigato, V.; Battaglin, G.; Boscolo‐Boscoletto, A.; DeBattisti, A. Journal of The Electrochemical Society 1992, 139, 1655.
(51) Kawai, T.; Sakata, T. Chemical Physics Letters 1980, 72, 87.
(52) Zheng, J. P.; Cygan, P. J.; Jow, T. R. Journal of The Electrochemical Society 1995, 142, 2699.
(53) Zhitomirsky, I. Journal of Materials Science 1999, 34, 2441.
(54) Zhitomirsky, I. Materials Letters 1998, 33, 305.
(55) Zhitomirsky, I. Journal of the European Ceramic Society 1999, 19, 2581.
(56) Chu, S.-Z.; Wada, K.; Inoue, S.; Hishita, S.-i.; Kurashima, K. The Journal of Physical Chemistry B 2003, 107, 10180.
(57) Cheng, K.-W.; Lin, Y.-T.; Chen, C.-Y.; Hsiung, C.-P.; Gan, J.-Y.; Yeh, J.-W.; Hsieh, C.-H.; Chou, L.-J. Applied Physics Letters 2006, 88, 043115.
(58) Chueh, Y. L.; Hsieh, C. H.; Chang, M. T.; Chou, L. J.; Lao, C. S.; Song, J. H.; Gan, J. Y.; Wang, Z. L. Advanced Materials 2007, 19, 143.
(59) Panić, V.; Dekanski, A.; Mišković-Stanković, V. B.; Milonjić, S.; Nikolić, B. Journal of Electroanalytical Chemistry 2005, 579, 67.
(60) Chu, S. Z.; Inoue, S.; Wada, K.; Hishita , S. Journal of The Electrochemical Society 2004, 151, C38.
(61) Guo, Y. G.; Hu, Y. S.; Sigle, W.; Maier, J. Advanced Materials 2007, 19, 2087.
(62) Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Müller, M. M.; Kleebe, H.-J.; Rachut, K.; Ziegler, J.; Klein, A.; Jaegermann, W. The Journal of Physical Chemistry C 2013, 117, 22098.
(63) Ismail, A. A.; Bahnemann, D. W.; Al-Sayari, S. A. Applied Catalysis A: General 2012, 431-432, 62.
(64) Ismail, A. A.; Robben, L.; Bahnemann, D. W. Chemphyschem : a European journal of chemical physics and physical chemistry 2011, 12, 982.
(65) Houšková, V.; Štengl, V.; Bakardjieva, S.; Murafa, N.; Tyrpekl, V. Applied Catalysis B: Environmental 2009, 89, 613.
(66) Debecker, D. P.; Farin, B.; Gaigneaux, E. M.; Sanchez, C.; Sassoye, C. Applied Catalysis A: General 2014, 481, 11.
(67) Jiao, Y.; Jiang, H.; Chen, F. ACS Catalysis 2014, 4, 2249.
(68) Qu, J.; Zhang, X.; Wang, Y.; Xie, C. Electrochimica Acta 2005, 50, 3576.
(69) Yu-Zum Lin, J.-Y. G.,
National Tsing Hua University, 2005.
(70) Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F. Journal of Applied Physics 1994, 75, 2042.
(71) Mar, S. Y.; Chen, C. S.; Huang, Y. S.; Tiong, K. K. Applied Surface Science 1995, 90, 497.
(72) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Journal of the American Chemical Society 2012, 134, 4294.