研究生: |
江至淳 Chiang, Chih-Chun |
---|---|
論文名稱: |
基於單層石墨烯的發光元件 A Light Emitting Device Based on Monolayer Graphene |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
江雨龍
Jiang, Yeu-Long 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 單層石墨烯 、可見光發光元件 、載子注入 、石墨烯缺陷 、順偏發光 、逆偏發光 |
外文關鍵詞: | Single Layer Graphene, Visible Light Emitting Device, Defects of Graphene, Carriers Injection, Luminescence at Forward Bias, Luminescence at Reverse Bias |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於矽為非直接能隙材料,使其天生就不利應用於光電行為上,所以本論文利用矽與石墨烯形成的接面,將元件操作在順向及逆向偏壓下,提供載子至接面處發光, 而本論文的發光機制為首次提出。
本論文將矽基板製作成重摻雜的n++及p++區,用來提供電子及電洞,將載子注入至轉移到基板上的單層石墨烯,由於石墨烯橫向傳輸的特性,所以可期待載子於此二維材料中復合。然而完整的石墨烯是沒有能隙的,所以難以發出可見光,因此,我們在石墨烯的邊界製造缺陷,讓載子在這些能態中復合以發出可見光。
在本論文元件的架構下,不論是操作在順向或是逆向偏壓,皆有觀測到發光的現象。而發光的波長主峰值於650nm附近,隨著偏壓的上升,發光的強度也隨之上升,另外有兩個峰值位於520nm及420nm附近。我們亦觀察到元件操作在不同偏壓方向時,發光位置亦不同,這是由於順向偏壓及逆向偏壓時載子流動的方向不同所導致。
而本論文的成果提供了一種可快速於矽基板上實現發光的方式,只要適當的選擇發光層的材料,例如:摻鋁氧化鋅,即可在矽基板上製作一個紫外光發光源。
Because silicon is an indirect bandgap material, it is not easy to be applied for light emission. This thesis is to take advantage of the junction formed by silicon and graphene and to operate the device at forward or reverse bias to emit visible light at the junction. The luminescence mechanism is proposed for the first time.
In this thesis, heavily doped N-type and P-type regions were formed on the silicon substrate to provide electrons and holes. Carriers were injected into a single-layer graphene which was transferred to the silicon substrate. Owing to the two-dimensional structure and the electrical transport characteristics of graphene, carrier recombination in the single-layer graphene is expected. However, graphene is known to be a zero-bandgap matreial, so it is difficult to emit visible light. Therefore, creating defects at the border region of graphene makes carriers recombine and emit light.
In this work, electroluminescence was observed no matter under reverse or forward bias. And the emission mainly peaks at the wavelength was about 650nm. When the bias was increased, the light intensity also increased. Besides, two more peaks around 420nm and 520nm were also observed. Furthermore, all the observed luminescence occurred at opposite places when the device was biased in opposite directions, suggesting that carriers move in opposite directions under opposite bias.
The results of this thesis provide a way to create light source quickly on a silicon substrate. If a light emission layer is chosen adequately (for example, aluminum doped zinc oxide), creating an UV light source on a silicon substrate is possible.
[1] B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, "Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode," Applied Physics Letters, vol. 64, no. 21, pp. 2842-2844, 1994/05/23 1994, doi: 10.1063/1.111977.
[2] D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, "A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm," Nature, vol. 387, no. 6634, pp. 686-688, 1997/06/01 1997, doi: 10.1038/42667.
[3] J. Stimmer, A. Reittinger, J. F. Nützel, G. Abstreiter, H. Holzbrecher, and C. Buchal, "Electroluminescence of erbium–oxygen‐doped silicon diodes grown by molecular beam epitaxy," Applied Physics Letters, vol. 68, no. 23, pp. 3290-3292, 1996/06/03 1996, doi: 10.1063/1.116577.
[4] M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsai, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Applied Physics Letters, vol. 84, no. 12, pp. 2163-2165, 2004/03/22 2004, doi: 10.1063/1.1687458.
[5] Y.-P. Hsieh et al., "Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes," Nano Letters, vol. 9, no. 5, pp. 1839-1843, 2009/05/13 2009, doi: 10.1021/nl803804a.
[6] P. Steiner, F. Kozlowski, and W. Lang, "Light‐emitting porous silicon diode with an increased electroluminescence quantum efficiency," Applied Physics Letters, vol. 62, no. 21, pp. 2700-2702, 1993/05/24 1993, doi: 10.1063/1.109236.
[7] E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation‐rich silicon," Applied Physics Letters, vol. 69, no. 18, pp. 2686-2688, 1996/10/28 1996, doi: 10.1063/1.117678.
[8] W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature, vol. 410, no. 6825, pp. 192-194, 2001/03/01 2001, doi: 10.1038/35065571.
[9] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, "Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes," Opt. Lett., vol. 34, no. 8, pp. 1198-1200, 2009/04/15 2009, doi: 10.1364/OL.34.001198.
[10] D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, "Properties of graphene: a theoretical perspective," Advances in Physics, vol. 59, no. 4, pp. 261-482, 2010/07/01 2010, doi: 10.1080/00018732.2010.487978.
[11] E. Bourgeat-Lami, J. Faucheu, and A. Noël, "Latex routes to graphene-based nanocomposites," Polymer Chemistry, 10.1039/C5PY00490J vol. 6, no. 30, pp. 5323-5357, 2015, doi: 10.1039/C5PY00490J.
[12] P. R. Wallace, "The Band Theory of Graphite," Physical Review, vol. 71, no. 9, pp. 622-634, 05/01/ 1947, doi: 10.1103/PhysRev.71.622.
[13] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109-162, 01/14/ 2009, doi: 10.1103/RevModPhys.81.109.
[14] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Physical Chemistry Chemical Physics, 10.1039/B613962K vol. 9, no. 11, pp. 1276-1290, 2007, doi: 10.1039/B613962K.
[15] Y. y. Wang et al., "Raman Studies of Monolayer Graphene: The Substrate Effect," The Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10637-10640, 2008/07/01 2008, doi: 10.1021/jp8008404.
[16] H. Ivey, "Electroluminescence and semiconductor lasers," IEEE Journal of Quantum Electronics, vol. 2, no. 11, pp. 713-726, 1966, doi: 10.1109/JQE.1966.1073755.
[17] 施敏 and 伍國, "半導體元件物理學 第三版 (下冊)," ed, 2009.
[18] M. G. Craford, "Recent developments in light-emitting-diode technology," IEEE Transactions on Electron Devices, vol. 24, no. 7, pp. 935-943, 1977, doi: 10.1109/T-ED.1977.18854.
[19] L. Pavesi, "Silicon-Based Light Sources for Silicon Integrated Circuits," Advances in Optical Technologies, vol. 2008, p. 12, 2008, Art no. 416926, doi: 10.1155/2008/416926.
[20] D. A. Neamen, Semiconductor physics and devices. McGraw-Hill New York, 1997.
[21] F. Stellari, F. Zappa, S. Cova, and L. Vendrame, "Tools for non-invasive optical characterization of CMOS circuits," in International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), 5-8 Dec. 1999 1999, pp. 487-490, doi: 10.1109/IEDM.1999.824199.
[22] http://www.generalpurposehosting.com/handbooks/qrhb.pdf.
[23] Y. D. Kim et al., "Bright visible light emission from graphene," Nature Nanotechnology, vol. 10, no. 8, pp. 676-681, 2015/08/01 2015, doi: 10.1038/nnano.2015.118.
[24] Z. Gan et al., "Mechanism of Photoluminescence from Chemically Derived Graphene Oxide: Role of Chemical Reduction," Advanced Optical Materials, vol. 1, no. 12, pp. 926-932, 2013/12/01 2013, doi: 10.1002/adom.201300368.
[25] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural Defects in Graphene," ACS Nano, vol. 5, no. 1, pp. 26-41, 2011/01/25 2011, doi: 10.1021/nn102598m.
[26] G. Eda et al., "Blue Photoluminescence from Chemically Derived Graphene Oxide," Advanced Materials, vol. 22, no. 4, pp. 505-509, 2010/01/26 2010, doi: 10.1002/adma.200901996.
[27] J. R. Rani et al., "Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films," RSC Advances, 10.1039/C3RA00028A vol. 3, no. 17, pp. 5926-5936, 2013, doi: 10.1039/C3RA00028A.
[28] 蘇秉國, “石墨烯異質接面電晶體特性研究,” 國立清華大學, 碩士論文, 2018