研究生: |
鍾宛婷 Chung, Wan-Ting |
---|---|
論文名稱: |
枯草桿菌之胞外金屬蛋白酶前驅物晶體結構研究 Crystal structure of extracellular metalloprotease precursor from Bacillus subtilis |
指導教授: |
王雯靜
Wang, Wen-Ching |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 胞外金屬蛋白酶 、枯草桿菌 、X光繞射 、3D結構 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
枯草桿菌中的胞外金屬蛋白酶 (Extracellular metalloprotease from Bacillus subtilis, Mpr;EC 3.4.21.19 ) 屬於serine peptidases中的glutamyl endopeptidase (clan PA family S1 subfamily A,S1A) 。枯草桿菌中的Mpr擁有narrow substrate specificity,具專一性水解glutamate及aspartate中的□-carboxyl groups之能力,可以應用在特定融合蛋白質之分解,進而產生生物活性胜肽 (bioactive peptides) 。生物活性胜肽已知對人體的生理功能具有正面的影響。然而,在自然界中生物活性胜肽的含量通常不多,因此有許多研究都致力於增加食物中生物活性胜肽的含量。為了達到這個目標,發展出具有受質專一性的蛋白酶是必要的。本論文主要目的為決定Mpr的X光三度空間結構,以進行後續酵素工程之研究。我們利用overlapping PCR方法,得到pro-Mpr S267A突變株,並將其表現的蛋白質形成晶體使用多波長異常散射方法 (multi-wavelength anomalous dispersion methods, MAD) 得到解析度為1.1 Å的pro-Mpr S267A 突變株的結構。如同其他的S1A family chymotrypsin-like fold蛋白酶,整個pro-Mpr S267A突變株的結構由N-domain和C-domain組成,這兩個domain分別由六個和七個反向平行的□-sheets形成□-barrels。所形成的□-barrels會相互垂直,且在這兩個domain之間形成一個具有酵素催化位置及受質結合位置的夾縫。pro-Mpr S267A 突變株擁有的propeptide區域環繞在mature-Mpr的外圍,提供適當的骨架使mature-Mpr能摺疊成正確的構型。此外,propeptide片段 (residue 85-93) 會遮蔽Mpr的催化位置及受質結合位置,推測在有propeptide存在時,Mpr無法進行其酵素功能。藉由pro-Mpr S267A突變株的3D結構所提供的資訊,可並進一步修飾其受質結合位期望能增加酵素的受質專一性。未來工作將以結構為基礎,探討其受質結合位置的相關性,並進一步修飾其受質結合位置,期望能增加酵素的受質專一性,對於提昇合成生物活性的蛋白質與胜肽的商業化應用將有相當大的助力。
1. Mullally, M.M., H. Meisel, and R.J. FitzGerald, Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. FEBS Lett, 1997. 402(2-3): p. 99-101.
2. Matoba, N., et al., A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery. FEBS Lett, 1999. 452(3): p. 181-4.
3. Yokoyama, K., H. Chiba, and M. Yoshikawa, Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito. Biosci Biotechnol Biochem, 1992. 56(10): p. 1541-5.
4. Wu, J. and X. Ding, Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem, 2001. 49(1): p. 501-6.
5. Shin, Z.I., et al., His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem, 2001. 49(6): p. 3004-9.
6. Kim, S.Y., et al., Detection of site-specific proteolysis in secretory pathways. Biochem Biophys Res Commun, 2002. 296(2): p. 419-24.
7. Miguel, M., et al., Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol Nutr Food Res.
8. Yoshikawa, M., et al., Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors, 2000. 12(1-4): p. 143-6.
9. Prak, K., et al., Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Peptides, 2006. 27(6): p. 1179-86.
10. Matoba, N., et al., Design and production of genetically modified soybean protein with anti-hypertensive activity by incorporating potent analogue of ovokinin(2-7). FEBS Lett, 2001. 497(1): p. 50-4.
11. Schechter, I. and A. Berger, On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun, 1968. 32(5): p. 898-902.
12. Kurth, T., et al., Converting trypsin to chymotrypsin: structural determinants of S1' specificity. Biochemistry, 1997. 36(33): p. 10098-104.
13. Hedstrom, L., L. Szilagyi, and W.J. Rutter, Converting trypsin to chymotrypsin: the role of surface loops. Science, 1992. 255(5049): p. 1249-53.
14. Akoh, C.C., et al., GDSL family of serine esterases/lipases. Prog Lipid Res, 2004. 43(6): p. 534-52.
15. Palva, I., et al., Secretion of interferon by Bacillus subtilis. Gene, 1983. 22(2-3): p. 229-35.
16. Olmos-Soto, J. and R. Contreras-Flores, Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol, 2003. 62(4): p. 369-73.
17. Airaksinen, U., et al., Production of Chlamydia pneumoniae proteins in Bacillus subtilis and their use in characterizing immune responses in the experimental infection model. Clin Diagn Lab Immunol, 2003. 10(3): p. 367-75.
18. Taira, S., et al., Production of pneumolysin, a pneumococcal toxin, in Bacillus subtilis. Gene, 1989. 77(2): p. 211-8.
19. Ho, K.M. and B.L. Lim, Co-expression of a prophage system and a plasmid system in Bacillus subtilis. Protein Expr Purif, 2003. 32(2): p. 293-301.
20. Huang, H., et al., Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst Eng, 2004. 27(1): p. 63-9.
21. Bron, S., et al., Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol, 1998. 64(1): p. 3-13.
22. Liu, H.B., et al., An efficient heat-inducible Bacillus subtilis bacteriophage 105 expression and secretion system for the production of the Streptomyces clavuligerus beta-lactamase inhibitory protein (BLIP). J Biotechnol, 2004. 108(3): p. 207-17.
23. Priest, F.G., Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev, 1977. 41(3): p. 711-53.
24. Rawlings, N.D., et al., MEROPS: the peptidase database. Nucleic Acids Res, 2008. 36(Database issue): p. D320-5.
25. Okamoto, H., et al., Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051; application to the recovery of bioactive peptides from fusion proteins by sequence-specific digestion. Appl Microbiol Biotechnol, 1997. 48(1): p. 27-33.
26. Warshel, A., et al., How do serine proteases really work? Biochemistry, 1989. 28(9): p. 3629-37.
27. Hedstrom, L., Serine protease mechanism and specificity. Chem Rev, 2002. 102(12): p. 4501-24.
28. Khan, A.R. and M.N. James, Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci, 1998. 7(4): p. 815-36.
29. Shinde, U.P., J.J. Liu, and M. Inouye, Protein memory through altered folding mediated by intramolecular chaperones. Nature, 1997. 389(6650): p. 520-2.
30. Park, C.H., et al., Hetero- and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. J Bacteriol, 2004. 186(19): p. 6457-64.
31. Nienaber, V.L., K. Breddam, and J.J. Birktoft, A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. Biochemistry, 1993. 32(43): p. 11469-75.
32. Meijers, R., et al., The crystal structure of glutamyl endopeptidase from Bacillus intermedius reveals a structural link between zymogen activation and charge compensation. Biochemistry, 2004. 43(10): p. 2784-91.
33. Demidyuk, I.V., et al., Modification of substrate-binding site of glutamyl endopeptidase from Bacillus intermedius. Protein Eng Des Sel, 2004. 17(5): p. 411-6.
34. Barbosa, J.A., J.W. Saldanha, and R.C. Garratt, Novel features of serine protease active sites and specificity pockets: sequence analysis and modelling studies of glutamate-specific endopeptidases and epidermolytic toxins. Protein Eng, 1996. 9(7): p. 591-601.
35. Ishizaki, J., et al., Production of recombinant human glucagon in the form of a fusion protein in Escherichia coli; recovery of glucagon by sequence-specific digestion. Appl Microbiol Biotechnol, 1992. 36(4): p. 483-6.
36. Guedes, S., et al., Mass spectrometry characterization of the glycation sites of bovine insulin by tandem mass spectrometry. J Am Soc Mass Spectrom, 2009. 20(7): p. 1319-26.
37. De Filippis, V. and A. Fontana, Semisynthesis of carboxy-terminal fragments of thermolysin. Int J Pept Protein Res, 1990. 35(3): p. 219-27.
38. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
39. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
40. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 5): p. 760-3.
41. Vagin, A. and A. Teplyakov, Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 1): p. 22-5.
42. Skubak, P., G.N. Murshudov, and N.S. Pannu, Direct incorporation of experimental phase information in model refinement. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2196-201.
43. Lamzin, V.S. and K.S. Wilson, Automated refinement for protein crystallography. Methods Enzymol, 1997. 277: p. 269-305.
44. Gouet, P., et al., ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics, 1999. 15(4): p. 305-8.
45. Holm, L., et al., Searching protein structure databases with DaliLite v.3. Bioinformatics, 2008. 24(23): p. 2780-1.
46. Dubin, G., et al., Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J Mol Biol, 2008. 379(2): p. 343-56.