研究生: |
鍾明熹 CHUNG, MING-HSI |
---|---|
論文名稱: |
探討凸起路面對於自行車騎乘之影響 - 從肌肉電位的觀點 The effect of riding bicycle on a bump road from the perspective of muscle activation |
指導教授: |
邱文信
Chiu, Wen-Hsin |
口試委員: |
相子元
Shiang, Tzyy-Yuang 涂瑞洪 Tu, Jui-Hung |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 體育學系體育碩士在職專班 In-service Master Program of Physical Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 肌肉電位 、預先活化 、凸起路面 、腳踏車 |
外文關鍵詞: | muscle activation, pre-activation, bump road, bicycle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:一、探討騎乘自行車經過凸起路面與平順路面時,上肢肌群活化程度之差異。二、探討騎乘自行車遇到障礙物前上肢肌群是否產生預先活化機制。透過上述目的,了解人體在騎乘自行車時,肌群是如何運作來保持身體平衡、避免跌倒及傷害。方法:利用Delsys無線肌電收取肌肉活化之相關參數,將Delsys貼至慣用側與非慣用側上肢伸腕肌、屈腕肌、肱二頭肌與肱三頭肌。在兩種不同路面(平順路面與凸起路面),將踩踏頻率訂定為50 rpm,騎乘距離為40公尺,全程收取肌肉活化之相關參數。預先活化機制時間點定為接觸障礙物前0.5秒,透過相同路面之騎乘,擷取預先活化相關參數。結果:一、騎乘經過平順路面及凸起路面對自行車騎乘者上肢肌肉的肌肉活化達顯著差異。二、騎乘者在經過凸起路面前產生肌肉預先活化。結論:一、騎乘自行車時,騎乘者會改變姿勢、改變肌肉用力程度來保持平衡、適應不同路面。本研究結果顯示,在其經過凸起路面狀況下,慣用側與非慣用側兩側伸腕肌、屈腕肌以及肱二頭肌活化程度達顯著差異。騎乘經過凸起路面時,以腕部肌肉(伸腕肌、屈腕肌)為主要作用肌群。二、自行車騎乘者在遭遇到凸起路面時,在與障礙物接觸前,肌肉已產生預先活化,以調整肌肉適應環境、與環境產生互動,避免受傷。遭遇到障礙物前,騎乘者慣用側的伸腕肌、屈腕肌以及肱二頭肌產生預先活化,以順利與環境互動,穩定車身以及避免意外發生。
Purpose: 1. Study the difference between cycling on uneven and smooth roads in terms of the degree of activation of upper limb muscles. 2. Study if there is a pre-activation mechanism in upper limb muscles before contact with obstacle while cycling. Through the above purposes, to understand the body in riding a bike, the muscles are how to maintain the body balance, to avoid falling and injury. Methods: Delsys wireless, which were attached to affixed to wrist muscle, flexor carpi, biceps, and triceps of the upper limbs, were utilized to collect the parameters of muscle activation. The pre-activation mechanism time point is 0.5 seconds before contact with obstacle. The parameters were collected during a controlled cycling process with a fixed pedaling frequency: 50 rpm and travel distance: 40 m. Results: 1. There is a significant difference between cycling on the uneven and smooth roads in terms of upper limb muscle activation. 2. There will be muscle pre-activated process before hitting obstacles. Conclusion: 1. To maintain the balance on different pavement conditions, rider will adjust the cycling position and the output on different muscles. The results of this study show that there is a significant difference in the degree of activation of the wrist muscle, flexor wrist and brachial biceps on both sides of the conventional and non-conventional sides. The wrist muscles play the main roles of muscle groups when cycling on the uneven road. 2. Before contact the obstacles, there will be a pre-activation mechanism for rider to adapt to the environment and adjustment of muscles to avoid injury. Before the obstacle, the rider's wrist, flexor wrist and brachial biceps arose pre-activation to interact with the environment, stabilize the body, and avoid accidents.
93年臺灣地區社會發展趨勢調查(時間運用)統計結果(2004)。行政院主計處。取自http://www.dgbas.gov.tw。
古國宏、吳明憲、蔡永川、吳穌(2014)。業餘選手騎乘公路車常見的運動傷害調查. 屏東教大體育,17, 345-355.
吳武政(2001)。以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係。未出版之碩士論文,大同大學,台北市。
李曉青(2010)。台北市自行車單車意外事故型態調查研究。未出版碩士論文,國立台北護理大學,台北市。
林狀宇(2012)。路面標記佈設對交通安全影響之研究。未出版碩士論文,逢甲大學,新北市。
張柏苓、吳堉光、相子元(2012)。不同阻力對自行車坐姿與站姿騎乘的影響。大專體育學刊,14,448-457。
教育部體育署(2012)。自行車道整體路網串連建設計畫。
陳俊華、陳坤檸(2004)。 預估 9-12 歲男童最大攝氧量之研究。大專體育學刊,6(1),263-273。
陳韋伶、王令儀(2009)。彈簧質量模型與其在生物力學研究上的應用。中華體育季刊,23(3),102-109。
黃貫倫、吳佳蓉、陳秀榮、陳彥廷、涂瑞洪(2012)。摺疊自行車振幅對頸部之影響。華人運動生物力學期刊,7,113-17。
黃韻靜、洪彰岑、黃文傑、鄭維怜、李宜芳、劉宇(2006)。視障生下階梯動作肌肉勁度調節能力與肌電現象之研究.。體育學報,39(4),47-61。
經濟部工業生產統計月報(2007),台灣區車輛工業同業公會整理。
錢明福(2015)。探討顛簸振動與自行車把手型式對上肢肌群的影響。未出版之碩士論文,新竹教育大學體育研究所,新竹市。
駱主平(2012)。自行車坐墊高度對騎乘舒適性的影響。未出版之碩士論文,新竹教育大學體育研究所,新竹市。
鍾印鈞(2007)。以把手壓力探討不同自行車種之把手設計研究。未出版碩士論文,大同大學工業設計學系(所),台北市。
Andersen, K. V., & Bovim, G. (1997). Impotence and nerve entrapment in long distance amateur cyclists. Acta Neurologica Scandinavica, 95(4), 233-240.
Bogaerts, A., Delecluse, C., Claessens, A. L., Coudyzer, W., Boonen, S., & Verschueren, S. M. (2007). Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62(6), 630-635.
Bosco, C., Colli, R., Introini, E., Cardinale, M., Tsarpela, O., Madella, A., ... & Viru, A. (1999). Adaptive respsonses of human skeletal muscle to vibration exposure. Clinical Physiology-Oxford-, 19, 183-187.
Bruyere, O., Wuidart, M. A., Di Palma, E., Gourlay, M., Ethgen, O., Richy, F., & Reginster, J. Y. (2005). Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Archives of physical medicine and rehabilitation, 86(2), 303-307.
Burke, E. R. (1981). Ulnar neuropathy in bicyclists. Physician and Sportsmedicine, 9, 53-56.
Clarys, J. P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology, 11, 451 - 457.
Ebersbach, G., Edler, D., Kaufhold, O., & Wissel, J. (2008). Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson’s disease. Archives of physical medicine and rehabilitation, 89(3), 399-403.
Fagnani, F., Giombini, A., Di Cesare, A., Pigozzi, F., & Di Salvo, V. (2006). The effects of a whole-body vibration program on muscle performance and flexibility in female athletes. American Journal of Physical Medicine & Rehabilitation, 85(12), 956-962.
Gollhofer, A., D. Schmidtbleicher, and V. Dietz. "Regulation of muscle stiffness in human locomotion." International Journal of Sports Medicine 5.01 (1984): 19-22.
Gregersen, C. S., & Hull, M. L. (2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions. Journal of biomechanics, 36(6), 803-813.
Hashemi, J., Breighner, R., Jang, T. H., Chandrashekar, N., Ekwaro-Osire, S., & Slauterbeck, J. R. (2010). Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation. The knee, 17(3), 235-241.
Kawanabe, K., Kawashima, A., Sashimoto, I., Takeda, T., Sato, Y., & Iwamoto, J. (2007). Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. The Keio journal of medicine, 56(1), 28-33.
Lundström, R., Holmlund, P., & Lindberg, L. (1998). Absorption of energy during vertical whole-body vibration exposure. Journal of biomechanics, 31(4), 317-326.
Mellion, M. B. (1994). Neck and back pain in bicycling. Clinics in Sports Medicine, 13, 137-164.
Mestdagh, K. (1998). Personal perspective: In search of an optimum cycling posture. Applied Ergonomics, 29, 325-334.
Moritz, C. T., & Farley, C. T. (2005). Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. Journal of Experimental Biology, 208(5), 939-949.
Müller, R., Grimmer, S., & Blickhan, R. (2010). Running on uneven ground: leg adjustments by muscle pre-activation control. Human movement science, 29(2), 299-310.
Nigg, B.M., Wakeling, J.M., 2001. Impact forces and muscle tuning – a new paradigm. Exercise and Sport Sciences Review 29 (1), 37–41
Pećina, M., & Bojanić, I. (1993). Overuse injuries of the musculoskeletal system. CRC Press.
Prisby, R. D., Lafage-Proust, M. H., Malaval, L., Belli, A., & Vico, L. (2008). Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing research reviews, 7(4), 319-329.
Puranik, S., Long, J., & Coffman, S. (1998). Profile of pediatric bicycle injuries. Southern medical journal, 91(11), 1033-1037.
Rees, S. S., Murphy, A. J., & Watsford, M. L. (2008). Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial. Physical therapy, 88(4), 462-470.
Richmond, D. R. (1994). Handlebar problems in bicycling. Clinics in Sports Medicine, 13, 165-173.
Rittweger, J., Mutschelknauss, M., & Felsenberg, D. (2003). Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clinical physiology and functional imaging, 23(2), 81-86.
Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British journal of sports medicine, 33(6), 398-400.
Segers, M. J. M., Wink, D., & Clevers, G. J. (1997). Bicycle-spoke injuries: a prospective study. Injury, 28(4), 267-269.
Seidel, H., & Heide, R. (1986). Long-term effects of whole-body vibration: a critical survey of the literature. International archives of Occupational and environmental health, 58(1), 1-26.
Thomee, R., Renström, P., Karlsson, J., & Grimby, G. (1995). Patellofemoral pain syndrome in young women. Scandinavian Journal of Medicine & Science in sports, 5(4), 245-251.
Torvinen, S., Kannus, P., SievaÈnen, H., JaÈrvinen, T. A., Pasanen, M., Kontulainen, S., ... & Vuori, I. (2002). Effect of a vibration exposure on muscular performance and body balance. Randomized cross‐over study. Clinical Physiology and Functional imaging, 22(2), 145-152.