簡易檢索 / 詳目顯示

研究生: 郭世偉
論文名稱: Bi/Te複合薄膜濺鍍製程暨其熱電性質研究
Study of thermoelectric properties of Bi/Te composite thin films by sputter deposition
指導教授: 廖建能
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 熱電材料薄膜濺鍍法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的提昇積體電路(IC)之元件密度亦大幅度的增加,而與元件效能及可靠度(Reliability)息息相關的散熱問題則成為一極重要的課題。近年來熱電冷凍(Thermoelectric refrigeration)具有易微型化與高可靠度之優點,因此逐漸受到學界與產業界的矚目,而熱電冷凍之效能與熱電材料之熱電優質(ZT值)有極密切之關係,Bi2Te3化合物半導體是目前室溫下所知最佳之熱電材料。本研究係利用磁控濺鍍法(Sputtering)來製備Bi2Te3化合物半導體薄膜,將Bi/Te雙層複合薄膜依序鍍在長有氧化層之矽基材上,並利用高溫熱處理的方法,藉由固態擴散反應生成Bi-Te化合物薄膜,探討Bi及Te薄膜厚度比對於Bi-Te化合物之成份比、電性及熱電性質之影響。研究結果顯示Bi-Te複合薄膜經熱處理(200℃,24小時)後,Seebeck係數由-38.3 μV/K增加至-201.3 μV/K,電阻率由2.02□10-3 μΩ-cm微幅增加到2.33□10-3 μΩ-cm,而熱導係數則由2.56 W/m□K降至0.71 W/m□K,可得到室溫下(T=300K)最大熱電優值ZT值為0.735。此外利用XRD分析薄膜微結構及其成份,並透過SEM來觀察薄膜表面微結構與兩層薄膜間互相擴散之情形。


    With the evolution of VLSI process technology, component density of Integrated circuit(IC) increased significantly and heat dissipation is becoming a very important issue for device performance and IC reliability consideration. Due to the advantages of miniaturization and reliability, the thermoelectric refrigeration is attracting increasing attention recently. The performance of the thermoelectric refrigeration depends closely on the figure of merit(ZT) of the material. The Bi2Te3 compound semi- conductors are best known bulk thermoelectric materials near room temperature regime. In this study, thin film forms of the Bi2Te3 compound semiconductors were prepared by sputter deposition method. The Bi/Te bilayer thin films were deposited on SiO2 substrate in sequence, then transformed into Bi-Te compound by thermal treatment through solid state reation. The thickness ratio of Bi/Te bilayer structures and thermal annealing condition on the composite and the thermoelectric properties of the Bi-Te composite thin films was investigated. The results show that the Seebeck coefficient changed from -38.3μV/K to -201.3μV/K, the resistivity increased slightly from 2.02□10-3μΩ-cm to 2.33□10-3μΩ-cm, and the thermal conductivity decreased from 2.56 W/ m□K to 0.71 W/m□K when the Bi-Te composite thin films was annealed at 200℃ for 24 hours. The maximum ZT were 0.735 in this condition near room temperature. The compound phase was identified by x-ray diffraction technique, the morphology and the interdiffusion at the interface of Bi/Te bilayer thin films were examined by Scanning Electron Microscope(SEM).

    摘要……………………………………………………………..…........Ⅰ 英文摘要………………………………………………………………..Ⅱ 目錄……………………………………………………………..………Ⅳ 圖目錄..…………………………………………………………………Ⅶ 表目錄……………………………………………………………..…ⅩⅠ 第一章 緒論…………………………………………………...………...1 1-1 動機……………………………………………………………….1 1-2 熱電致冷器及熱電產生器之原理……………………………….2 1-3 致冷器的效能…………………………………………………….4 1-4 提升熱電材料之ZT值的方法…………………………………...5 1-5熱電材料薄膜化的優點……………..............................................6 1-6本研究將進行之方式……………………………………………..7 第二章 文獻回顧…………………………………………….………….9 2-1 薄膜製備方法…………………………………………………….9 2-2 以濺鍍法沉積薄膜的優點……………………………………...10 第三章 實驗方法與步驟………………………………….…………...12 3-1 基材準備及儀器架構………………………………….………..13 3-2 分析儀器及原理………………………………….……………..15 3-3 實驗步驟………………………………….……………………..19 3-3.1 濺鍍時Ar製程壓力與溫度對薄膜表面結構之影響……..19 3-3.2 熱處理對薄膜金屬相互擴散與合金相生成之分析………21 3-3.2.1 微結構分析…………………………………………….21 3-3.2.2 電性分析……………………………………………….22 3-3.2.3 薄膜電阻隨溫度變化之分析………………………….22 3-3.2.4 熱處理對Seebeck係數之影響分析…………………..22 3-3.2.5 熱導係數之量測……………………………………….24 第四章 結果與討論………………………………….………..……….26 4-1 濺鍍時Ar製程壓力及基材溫度對於單層薄膜的影響……….26 4-1.1 不同Ar製程壓力及基材溫度對碲(Te)薄膜特性之影響…26 4-1.1.1 對表面微結構的影響………………………………….26 4-1.1.2 對Seebeck係數及電阻率的影響……………………..36 4-1.2 不同Ar製程壓力及基材溫度對鉍(Bi)薄膜特性之影響…40 4-1.2.1 對表面微結構的影響………………………………….40 4-1.2.2 對Seebeck係數及電阻率的影響……………………..47 4-2 熱處理對薄膜金屬互相擴散與合金相生成之分析…………...51 4-2.1 試片(一)Bi (1.3mTorr_175℃)/Te(3.0mTorr_125℃) ,厚度600Å/ 4500Å………………………………………52 4-2.1.1 電阻隨溫度變化之分析……………………………….52 4-2.1.2 微結構分析………………………………………….....55 4-2.1.3 熱電性質分析……………………………………….....57 4-2.2 試片(二)Bi(1.3mTorr_175℃)/Te(1.3mTorr_150℃) ,厚度850Å/1600Å……………………………………….61 4-2.2.1 電阻隨溫度變化之分析……………………………...61 4-2.2.2 微結構分析…………………………………………...63 4-2.2.3 剖面微結構分析………………………………….......65 4-2.2.4 熱電性質分析………………………………………...68 第五章 結論………………………………….………………………...74 第六章 參考文獻………………………………….…………………...76

    [1] John. E. Bowers, etc, “Experimental investigation of thin film InGaAsP coolers”, ThermoelectricMaterials 2000
    [2] John. E. Bowers, etc, “Integrated cooling for optoelectronic devices”,
    Photons West SPIE)Conference Proceedings, 2000
    [3] N. K. Dutta, etc, “Tunable InGaAs/GaAs/InGaP laser”, APL, 1997,
    1219~1220
    [4] Francis J. DiSalvo, Science. Vol. 285, 703 (1999)
    [5] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe
    Ed.,Boca Raton,Florida, 1995 Chap.3
    [6] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe
    Ed.,Boca Raton,Florida, 1995, P443
    [7] L.D.Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727(1993)
    [8] X. Sun, “The effect of quantum confinement of the thermoelectric figure of Merit”, Ph.D. Thesis,Massachusetts Institute of Technology, Department of Physics, June 1999.
    [9] Z. Zhang, J. Y. Ying, and M. S. Dresselhaus, “Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process” J. Mater. Res., 13, 1745 (1998).
    [10] X. Y. Zheng, S. Z. Li, M. Chen, and K. L. Wang, Proceedings of the
    International Mechanical Engineering Congress and Exposition, Dynamic Systems and Control, 59, p. 93 (1996).
    [11] Y. H. Shing, Y. Chang, A. Mirshafii, L. Hayashi, S. S. Roberts, J. Y. Josefowicz and N. Tran, “Sputtered Bi2Te3 and PbTe thin films”, J. Vac. Sci. Technol. A. 1, 503 (1983).
    [12] A.Dauscher, A.Thomy, H.Scherrer ” Pulsed laser deposition of Bi2Te3” Thin Solid Films 280(1996)61-66
    [13] R.Venkatasubramanian, T.Colpitts, E.Watko, M.Lamvik, N.El- Masry “MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications” Journal of Crystal Growth 170(1997)817-821
    [14] A.Giani, A.Boulouz, F.Pascal-Delannoy, A.Foucaran, E.Charles, A.Boyer” Growth of Bi2Te3 and Sb2Te3 thin-films by MOCVD”
    Materials Science and Engineering B64 (1999)19-24
    [15] Y. Miyazaki and T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition”, J. Crystal Growth, 229, 542 (2001).
    [16] M.Takahashi, Y. Katou and K. Nagata and S. Furuta, “The composition and conductivity of electrodeposited Bi-Te alloy films”, Thin Solid Films, 240, 70
    [17] A. J. yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition”, Appl. Phys. Lett., 79, 1039 (2001).
    [18] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands and A. M. Stacy, “Electrodeposition of ordered Bi2Te3 nanowire arrays”, J. am. Chem. Soc., 123, 7160 (2001).
    [19] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands and A. M. Stacy, “Electrodeposition of ordered Bi2Te3 nanowire arrays”, J. am. Chem. Soc., 123, 7160 (2001).
    [20] J.George and B. Pradeep, “Preparation and properties of co- evaporated bismuth telluride (Bi2Te3) thin films”, Solid State Commun., 56, 117 (1985).
    [21] VLSI製造技術. 莊達人 1995年 高立出版
    [22] D.G.Cahill, Rev.Sci.Instrum.61,802(1990)
    [23]Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, ASTM Designation F76,Annual Book of ASTM Standards, Vol. 10.05 (2000).
    [24]Binary Alloy Phase Diagrams. H.Okamoto and L.E.Tanner, submitted to the APD Program. p.800
    [25] H.S.Carslaw and J.C.Jaeger,Conduction of Heat in Solids,
    [26] VLSI製造技術.p150-161 莊達人 2002年 高立出版
    [27]http://www.webelements.com/webelements/elements/text/Te/xtal.
    html
    [28]http://www.webelements.com/webelements/elements/text/Bi/xtal.
    html
    [29] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe Ed.,Boca Raton,Florida, 1995, P215
    [30] K.Arshak and O.Korostynska “Effect of gamma radiation onto the
    properties of TeO2 thin films” Microelectronics International 19/3
    (2002) p.30-34
    [31] R.A.Horne “Effect of Oxide Impurities on the Thermoelectric Powers and Electrical Resistivities of Bismuth, Antimony, Tellurium, and Bismuth-tellurium Alloys”, J. Applied Phys, March 1959, V.30, Number 3

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE