簡易檢索 / 詳目顯示

研究生: 陳彥翔
Chen, Yen-Hsiang
論文名稱: 彈性自組裝三維光子晶體與光子能隙隨環境變化之研究
Flexibly self-assembling three-dimensional photonic crystals and investigating their photonic bandgap dependence on environments
指導教授: 陳玉彬
Chen, Yu-Bin
口試委員: 盧廷昌
Lu, Tien-Chang
劉承揚
Liu, Cheng-Yang
呂宥蓉
Lu, Yu-Jung
張瑞永
Chang, Jui-Yung
李銘晃
Li, Ming-Huang
李明蒼
Lee, Ming-Tsang
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 139
中文關鍵詞: 光子晶體光子能隙自組裝法蘭姆波咖啡環效應能隙偏移
外文關鍵詞: photonic crystal, photonic bandgap, self-assembly method, Lamb wave, coffee-ring effect, bandgap shift
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主題為球體自組裝之三維光子晶體,其應用多元且便於製作,製程中需使用微/奈米球懸浮溶液,而咖啡環效應將導致粒子的不均勻沉積,故為首要克服之挑戰。另一方面,光子晶體結構之光子能隙,其波段範圍與頻寬由組成之材料、結構尺寸、週期尺寸,以及結構類型等因素決定,這些因素則易直接或間接受環境影響,故而掌握環境變化與能隙的連動關係對光子晶體應用的拓展實有其必要。為解決咖啡環效應問題與探討能隙的表現,本論文開發一可調變蘭姆波頻率之激發裝置,其藉由蘭姆波可被激發於固體基板,以及能控制基板上液滴內部流場等特性,控制液滴內懸浮粒子的運動,以達成抑制咖啡環效應及自組裝光子晶體之目的,此裝置因頻率可調,故可彈性適用於多種粒徑聚苯乙烯奈米球的自組裝。另一方面,本論文於樣本冷卻/加熱實驗中發現,開放空間中測得之三維光子晶體能隙位置、能隙範圍,以及穿透率谷值於冰點附近(-10°C – 20°C)呈現兩階段變化。本論文採用數值建模計算結構穿透率頻譜、電磁場強度與坡印廷向量分布,並藉由模擬及實驗結果對照,綜合性探討環境溫度、環境相對溼度、樣本溫度、冷凝水生成與其相變化對於能隙偏移與穿透率谷值變化的影響,最終成功解釋造成能隙以及穿透率谷值兩階段變化的物理機制。


    The major topic in this dissertation was three-dimensional (3D) self-assembled photonic crystals (PCs) composed of nanospheres. 3D self-assembled PCs had been applied in diversified domains. They were conveniently fabricated using micro/nanosphere suspension. However, the coffee-ring effect (CRE) was the main challenge because it would lead suspended spheres to deposit as uneven sediments. On the other hand, the wavelength ranges and bandwidth of the photonic bandgap (PBG) of a 3D PC were determined according to component materials, structure size, period dimension, and PC type. The above factors were easily directly or indirectly influenced by an environment. For applying PCs, investigating the relationship between environment and PBG variations was essential. Therefore, this dissertation aimed at overcoming CRE and investigating the performance of PBG of 3D PCs. A frequency-turnable Lamb wave excitation setup was developed in this dissertation on the basis that Lamb waves could be excited on a solid substrate. This setup could further manipulate the internal flow field of a droplet when the droplet was located on the solid substrate, thus achieving the purpose of suppressing CRE and self-assembling 3D PC. The setup also usefully assembled multiple-diameter polystyrene nanospheres into 3D PC structures. On the other hand, this dissertation discovered that two-step change occurred on PBG position, wavelength ranges, and transmittance valley of 3D PC sample near freezing point (-10°C – 20°C) under an open environment. The numerical modeling was adopted to calculate the transmittance spectra and the distribution of electromagnetic magnitude and Poynting vectors. By comparing the simulation results with the experimental results, this dissertation comprehensively investigated the influences on band shift and transmittance valley variations from ambient temperature, ambient relative humidity, sample temperature, condensation generation, and the phase change of condensation. Finally, the physical mechanisms causing two-step change of PBG and transmittance valley were successfully explained.

    摘要---------------------------------------i Abstract----------------------------------ii 致謝-------------------------------------iii 目錄---------------------------------------v 圖目錄----------------------------------viii 表目錄-----------------------------------xii 符號表----------------------------------xiii 第一章 緒論--------------------------------1 1.1 研究背景-------------------------------1 1.2 研究動機-------------------------------5 1.3 研究目標-------------------------------6 第二章 理論與研究基礎----------------------8 2.1 三維平面波展開法理論-------------------8 2.2 蘭姆波簡介----------------------------17 2.2.1 材料位移----------------------------19 2.2.2 色散關係----------------------------21 2.3 蘭姆波抑制咖啡環效應------------------24 第三章 光子晶體能隙計算與應用-------------28 3.1 光子能隙計算--------------------------29 3.2 光子晶體製作--------------------------38 3.3 節能玻璃應用--------------------------41 第四章 冰點附近之能隙偏移現象-------------46 4.1 樣本製造與量測------------------------47 4.1.1 蘭姆波自組裝光子晶體裝置與成果------47 4.1.2 反射率與穿透率量測設備與成果--------59 4.2 數值建模與檢驗------------------------69 4.2.1 數值建模----------------------------69 4.2.2 模擬結果檢驗------------------------77 4.3 數值模擬探討穿透率與近場特性----------82 4.3.1 能隙偏移與穿透率變化----------------83 4.3.2 電磁場與坡印廷向量分布--------------89 4.4 能隙偏移再現性與遲滯性----------------91 第五章 蘭姆波自組裝法探討-----------------96 5.1 數值計算與建模------------------------96 5.1.1 壓電基板色散曲線計算----------------96 5.1.2 數值模型----------------------------98 5.2 懸浮粒子運動情形---------------------109 5.3 振盪頻率與粒徑關係-------------------112 5.4 可行擴大樣本面積辦法-----------------114 第六章 結論與未來研究建議----------------120 6.1 結論---------------------------------120 6.2 未來研究建議-------------------------124 參考文獻---------------------------------126

    [1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 1987.
    [2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, no. 23, pp. 2486-2489, 1987.
    [3] C.-C. Ho, Y.-B. Chen, and F.-Y. Shih, "Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy," International Journal of Thermal Sciences, vol. 102, pp. 17-25, 2016.
    [4] T. P. Otanicar, D. DeJarnette, Y. Hewakuruppu, and R. A. Taylor, "Filtering light with nanoparticles: a review of optically selective particles and applications," Advances in Optics and Photonics, vol. 8, no. 3, p. 541, 2016.
    [5] H. Monshat, L. Liu, and M. Lu, "A narrowband photo‐thermoelectric detector using photonic crystal," Advanced Optical Materials, vol. 7, no. 3, p. 1801248, 2018.
    [6] H. Kong, J.-B. Yeo, and H.-Y. Lee, "Tellurite suboxide based near-infrared reflector and filter," Optical Materials, vol. 83, pp. 157-164, 2018.
    [7] S. M. Ko, J. Hur, C. Lee, Isnaeni, S. H. Gong, M. Kim, and Y. H. Cho, "Hexagonal GaN nanorod-based photonic crystal slab as simultaneous yellow broadband reflector and blue emitter for phosphor-conversion white light emitting devices," Scientific Reports, vol. 10, no. 1, p. 358, 2020.
    [8] G. Dong, P. Qiao, S. Zheng, X. Yang, X. Meng, and J. Zhou, "Efficient light redirection via stretched field resonance in dielectric meta-resonator," Optics Express, vol. 27, no. 22, pp. 32846-32854, 2019.
    [9] Z.-J. Zhu, P.-F. Liu, and Y.-W. Tong, "Improving image quality and stability of two-dimensional photonic crystal slab by changing surface structure of the photonic crystal," Optics Communications, vol. 363, pp. 195-200, 2016.
    [10] W. Li, F. Meng, Y. Chen, Y. f. Li, and X. Huang, "Topology optimization of photonic and phononic crystals and metamaterials: a review," Advanced Theory and Simulations, vol. 2, no. 7, p. 1900017, 2019.
    [11] L. Zhu, A. P. Raman, and S. Fan, "Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 40, pp. 12282-12287, 2015.
    [12] A. K. Goyal and A. Kumar, "Recent advances and progresses in photonic devices for passive radiative cooling application: a review," Journal of nanophotonics, vol. 14, no. 3, pp. 030901-1/20, 2020.
    [13] X. Sheng, L. Z. Broderick, and L. C. Kimerling, "Photonic crystal structures for light trapping in thin-film Si solar cells: modeling, process and optimizations," Optics Communications, vol. 314, pp. 41-47, 2014.
    [14] S. Bhattacharya, I. Baydoun, M. Lin, and S. John, "Towards 30% power conversion efficiency in thin-silicon photonic-crystal solar cells," Physical Review Applied, vol. 11, no. 1, p. 014005, 2019.
    [15] Q. Xu, X. Liu, and Y. Xuan, "Transparent energy-saving glass with high resistance to solar heat," Journal of Photonics for Energy, vol. 9, no. 03, p. 1, 2018.
    [16] X. Wu, R. Hong, J. Meng, R. Cheng, Z. Zhu, G. Wu, Q. Li, C. F. Wang, and S. Chen, "Hydrophobic poly(tert-butyl acrylate) photonic crystals towards robust energy-saving performance," Angewandte Chemie International Edition, vol. 58, no. 38, pp. 13556-13564, 2019.
    [17] A. Ebnali-Heidari, C. Prokop, M. Ebnali-Heidari, and C. Karnutsch, "A proposal for loss engineering in slow-light photonic crystal waveguides," Journal of Lightwave Technology, vol. 33, pp. 1905-1912, 2015.
    [18] Y. Hinakura, D. Akiyama, H. Ito, and T. Baba, "Silicon photonic crystal modulators for high-speed transmission and wavelength division multiplexing," IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 3, pp. 1-8, 2021.
    [19] Z. Wang, J.-T. Mo, L. Chen, C.-Y. Zhu, Q.-S. Zhang, Y.-Q. Yu, and M. Pan, "Optical waveguide color tuning by fluorescence–phosphorescence dual emission and disparity of optical losses," Advanced Optical Materials, vol. 9, no. 7, p. 2001591, 2021.
    [20] S. M. Blakley, C. Vincent, I. V. Fedotov, X. Liu, K. Sower, D. Nodurft, J. Liu, X. Liu, V. N. Agafonov, V. A. Davydov, A. V. Akimov, and A. M. Zheltikov, "Photonic-crystal-fiber quantum probes for high-resolution thermal imaging," Physical Review Applied, vol. 13, no. 4, p. 044048, 2020.
    [21] G. Zhang, X. Wu, W. Zhang, S. Li, J. Shi, C. Zuo, S. Fang, and B. Yu, "High temperature Vernier probe utilizing photonic crystal fiber-based Fabry-Perot interferometers," Optics Express, vol. 27, no. 26, pp. 37308-37317, 2019.
    [22] C. Chen, Z. Q. Dong, J. H. Shen, H. W. Chen, Y. H. Zhu, and Z. G. Zhu, "2D photonic crystal hydrogel sensor for tear glucose monitoring," ACS Omega, vol. 3, no. 3, pp. 3211-3217, 2018.
    [23] A. Madani and S. Roshan Entezar, "Optical properties of one-dimensional photonic crystals containing graphene sheets," Physica B: Condensed Matter, vol. 431, pp. 1-5, 2013.
    [24] Z. Luo, M. Chen, J. Deng, Y. Chen, and J. Liu, "Low-pass spatial filters with small angle-domain bandwidth based on one-dimensional metamaterial photonic crystals," Optik - International Journal for Light and Electron Optics, vol. 127, no. 1, pp. 259-262, 2016.
    [25] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Physical Review Letters, vol. 95, no. 1, p. 013904, 2005.
    [26] T. Kondo, S. Hirano, T. Yanagishita, N. T. Nguyen, P. Schmuki, and H. Masuda, "Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement," Applied Physics Express, vol. 9, no. 10, p. 102001, 2016.
    [27] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nature Materials, vol. 16, no. 3, pp. 298-302, 2017.
    [28] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science, vol. 289, no. 5479, pp. 604-606, 2000.
    [29] Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, "Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region," Langmuir, vol. 19, pp. 977-980, 2003.
    [30] J. F. Galisteo-Lopez, M. Ibisate, R. Sapienza, L. S. Froufe-Perez, A. Blanco, and C. Lopez, "Self-assembled photonic structures," Advanced Materials, vol. 23, no. 1, pp. 30-69, 2011.
    [31] W. Dai, H. Wang, M. Wang, Z. Shen, D. Li, and D. Zhou, "Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic," Journal of Materials Science: Materials in Electronics, vol. 22, no. 4, pp. 422-425, 2010.
    [32] N. Dutta, "Fabrication of uniform large-area polymer “woodpile” photonic crystals structures with nanometer-scale features," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 9, no. 2, p. 023003, 2010.
    [33] Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old materials with new applications," Advanced Materials, vol. 12, pp. 693-713, 2000.
    [34] Z.-Z. Gu, A. Fujishima, and O. Sato, "Fabrication of high-quality opal films with controllable thickness," Chemistry of Materials, vol. 14, pp. 760-765, 2002.
    [35] H. G. Campos, K. P. Furlan, D. E. Garcia, R. Blick, R. Zierold, M. Eich, D. Hotza, and R. Janssen, "Effects of processing parameters on 3D structural ordering and optical properties of inverse opal photonic crystals produced by atomic layer deposition," International Journal of Ceramic Engineering & Science, vol. 1, no. 2, pp. 68-76, 2019.
    [36] Z.-Z. Gu, S. Hayami, S. Kubo, Q.-B. Meng, Y. Einaga, D. A. Tryk, A. Fujishima, and O. Sato, "Fabrication of structured porous film by electrophoresis," Journal of the American Chemical Society, vol. 123, pp. 175-176, 2001.
    [37] B. T. Holland, C. F. Blanford, T. Do, and A. Stein, "Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites," Chemistry of Materials, vol. 11, pp. 795-805, 1999.
    [38] Y.-H. Chen, L.-H. Liao, and Y.-B. Chen, "Realization of energy-saving glass using photonic crystals," Frontiers in Energy, vol. 12, no. 1, pp. 178-184, 2018.
    [39] M. Akella and J. J. Juarez, "High-throughput acoustofluidic self-assembly of colloidal crystals," ACS Omega, vol. 3, no. 2, pp. 1425-1436, 2018.
    [40] M. H. Lash, M. V. Fedorchak, S. R. Little, and J. J. McCarthy, "Fabrication and characterization of non-Brownian particle-based crystals," Langmuir, vol. 31, no. 3, pp. 898-905, 2015.
    [41] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops " Nature, vol. 389, no. 23, pp. 827-829, 1997.
    [42] H. Hu and R. G. Larson, "Marangoni effect reverses coffee-ring depositions," The Journal of Physical Chemistry B, vol. 110, pp. 7090-7094, 2006.
    [43] M. C. Pirrung, "How to make a DNA chip," Angewandte Chemie, vol. 41, no. 8, pp. 1276-1289, 2002.
    [44] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper," Analytical Chemistry, vol. 80, pp. 6928-6934, 2008.
    [45] J. Park and J. Moon, "Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing," Langmuir, vol. 22, pp. 3506-3513, 2006.
    [46] K. Y. Shin, J. Y. Hong, and J. Jang, "Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application," Advanced Materials, vol. 23, no. 18, pp. 2113-2118, 2011.
    [47] B. M. Weon and J. H. Je, "Capillary force repels coffee-ring effect," Physical Review E, vol. 82, no. 1, p. 015305, 2010.
    [48] S. Wollmann, R. B. Patel, A. Wixforth, and H. J. Krenner, "Ultrasonically assisted deposition of colloidal crystals," Applied Physics Letters, vol. 105, no. 3, p. 031113, 2014.
    [49] M. Kuang, L. Wang, and Y. Song, "Controllable printing droplets for high-resolution patterns," Advanced Materials, vol. 26, no. 40, pp. 6950-6958, 2014.
    [50] P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, vol. 476, no. 7360, pp. 308-311, 2011.
    [51] H. B. Eral, D. M. Augustine, M. H. G. Duits, and F. Mugele, "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting," Soft Matter, vol. 7, no. 10, p. 4954, 2011.
    [52] M. Kuang, J. Wang, B. Bao, F. Li, L. Wang, L. Jiang, and Y. Song, "Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line," Advanced Optical Materials, vol. 2, no. 1, pp. 34-38, 2014.
    [53] C. Seo, D. Jang, J. Chae, and S. Shin, "Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution," Scientific Reports, vol. 7, no. 1, p. 500, 2017.
    [54] D. Mampallil, J. Reboud, R. Wilson, D. Wylie, D. R. Klug, and J. M. Cooper, "Acoustic suppression of the coffee-ring effect," Soft Matter, vol. 11, no. 36, pp. 7207-7213, 2015.
    [55] W. Li, W. Ji, D. Lan, and Y. Wang, "Self-assembly of ordered microparticle monolayers from drying a droplet on a liquid substrate," The Journal of Physical Chemistry Letters Letter, vol. 10, no. 20, pp. 6184-6188, 2019.
    [56] G. Destgeer, A. Hashmi, J. Park, H. Ahmed, M. Afzal, and H. J. Sung, "Microparticle self-assembly induced by travelling surface acoustic waves," RSC Advances, vol. 9, no. 14, pp. 7916-7921, 2019.
    [57] H. Wang and K. Q. Zhang, "Photonic crystal structures with tunable structure color as colorimetric sensors," Sensors, vol. 13, no. 4, pp. 4192-4213, 2013.
    [58] K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Applied Physics Letters, vol. 75, no. 7, pp. 932-934, 1999.
    [59] J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, "Three-dimensional photonic band gap structure of a polymer-metal composite," Applied Physics Letters, vol. 76, no. 23, p. 3337, 2000.
    [60] C. Li and B. V. Lotsch, "Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing," Chemical Communications, vol. 48, no. 49, pp. 6169-6171, 2012.
    [61] S. H. Vakili Tahami, S. Pourmahdian, B. Shirkavand Hadavand, Z. S. Azizi, and M. M. Tehranchi, "Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals," Photonics and Nanostructures - Fundamentals and Applications, vol. 22, pp. 40-45, 2016.
    [62] D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals Theory, Applications, and Fabrication. Hoboken: WILEY, 2009.
    [63] I. A. Viktorov, Rayleigh and Lamb Waves (Ultrasonic Technology). New York: Springer US, 1967.
    [64] D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation. Springer-Verlag, 1999.
    [65] R. P. Hodgson, M. Tan, L. Yeo, and J. Friend, "Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics," Applied Physics Letters, vol. 94, p. 024102, 2009.
    [66] A. R. Rezk, J. R. Friend, and L. Y. Yeo, "Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes," Lab on a Chip, vol. 14, no. 11, pp. 1802-1805, 2014.
    [67] L. Poltawski and T. Watson, "Relative transmissivity of ultrasound coupling agents commonly used by therapists in the UK," Ultrasound in Medicine & Biology, vol. 33, no. 1, pp. 120-128, 2007.
    [68] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Foundations of HEAT TRANSFER, 6th ed. WILEY, 2013.
    [69] M. Iqbal, An Introduction to Solar Radiation. Elsevier, 2012.
    [70] Glass on Web. (2021,October 13). Design Solutions Using High-Performance Glass. Available: https://www.glassonweb.com/article/design-solutions-using-high-performance-glass
    [71] M. Polyanskiy. (2021, October 13). Optical constants of Glass. Available: https://refractiveindex.info/?shelf=3d&book=glass&page=soda-lime-clear
    [72] Taiwanglass Groupt. (2021, October 13). Clear Float Glass. Available: http://www.taiwanglass.com/product_list.php?langeno=en&sid=193
    [73] Taiwan Power Company. (2018, June 2). Introduction of a Building Energy Saving. Available:
    http://www.taipower.com.tw/content/sitemap/sitemap01.aspx
    [74] GUARDIAN SUNGUARD Advanced Architectural Glass, "Energy Savings: More Daylight, Less Solar Heat," 2007.
    [75] G. I. Kiani, A. Karlsson, L. Olsson, and K. P. Esselle, "Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows," presented at the Proceedings of Asia-Pacific Microwave Conference, Bangkok, Thailand, 2007.
    [76] M. Vasiliev, R. Alghamedi, M. Nur-E-Alam, and K. Alameh, "Photonic microstructures for energy-generating clear glass and net-zero energy buildings," Scientific Reports, vol. 6, p. 31831, 2016.
    [77] G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk, and S. Masudy-Panah, "Transparent heat regulating (THR) materials and coatings for energy saving window applications: impact of materials design, micro-structural, and interface quality on the THR performance," Progress in Materials Science, vol. 95, pp. 42-131, 2018.
    [78] N. DeForest, A. Shehabi, J. O'Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, "United States energy and CO 2 savings potential from deployment of near-infrared electrochromic window glazings," Building and Environment, vol. 89, pp. 107-117, 2015.
    [79] E. Cuce, P. M. Cuce, and C.-H. Young, "Energy saving potential of heat insulation solar glass: key results from laboratory and in-situ testing," Energy, vol. 97, pp. 369-380, 2016.
    [80] M. Ferrara, A. Castaldo, S. Esposito, A. D'Angelo, A. Guglielmo, and A. Antonaia, "AlN–Ag based low-emission sputtered coatings for high visible transmittance window," Surface and Coatings Technology, vol. 295, pp. 2-7, 2016.
    [81] Z. Liu, W. Xu, A. Lin, T. He, and F. Lin, "Deposition of NaGd(WO4)2:Eu3+/Bi3+ films on glass substrates and potential applications in white light emitting diodes," Energy and Buildings, vol. 113, pp. 9-14, 2016.
    [82] C. Fu and Z. M. Zhang, "Thermal radiative properties of metamaterials and other nanostructured materials: a review," Frontiers of Energy and Power Engineering in China, vol. 3, no. 1, pp. 11-26, 2009.
    [83] C.-L. Huang, C.-C. Ho, and Y.-B. Chen, "Development of an energy-saving glass using two-dimensional periodic nano-structures," Energy and Buildings, vol. 86, pp. 589-594, 2015.
    [84] M. Egen, R. Voss, B. Griesebock, and R. Zentel, "Heterostructures of polymer photonic crystal films," Chemistry of Materials, vol. 15, pp. 3786-3792, 2003.
    [85] E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, "Self-assembled 3D photonic crystals from ZnO colloidal spheres," Materials Chemistry and Physics, vol. 80, no. 1, pp. 257-263, 2003.
    [86] P. B. Deotare, L. C. Kogos, I. Bulu, and M. Loncar, "Photonic crystal nanobeam cavities for tunable filter and router applications," IEEE Journal of Selected Topics in Quantum electronics, vol. 19, no. 2, p. 3600210, 2013.
    [87] A. K. Goyal, H. S. Dutta, and S. Pal, "Recent advances and progress in photonic crystal-based gas sensors," Journal of Physics D: Applied Physics, vol. 50, no. 20, p. 203001, 2017.
    [88] R. B. Wehrspohn, S. L. Schweizer, B. Gesemann, D. Pergande, T. M. Geppert, S. Moretton, and A. Lambrecht, "Macroporous silicon and its application in sensing," Comptes Rendus Chimie, vol. 16, no. 1, pp. 51-58, 2013.
    [89] M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, "Thermal emission and absorption of radiation in finite inverted-opal photonic crystals," Physical Review A, vol. 72, no. 3, p. 033821, 2005.
    [90] Microwave Equipment & Components of America. (2021, October 13). Relative Permittivity of Polystyrene. Available: http://www.rfcafe.com/references/electrical/dielectric-constants-strengths.htm
    [91] 欒丕綱 and 陳啓昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 2nd ed. (Photonic Crystals). 2010.
    [92] J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, "High-selectivity single-chip spectrometer in silicon for operation at visible part of the spectrum," IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 553-559, 2000.
    [93] A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, "Modified emission of semiconductor nano-dots in three-dimensional photonic crystals," IET Circuits, Devices & Systems, vol. 1, no. 3, p. 210, 2007.
    [94] Y.-H. Chen, Y.-J. Lu, J.-Y. Chang, and Y.-B. Chen, "Impacts of both temperature and condensation on the band gap of photonic crystals around the freezing point," Optical Materials, vol. 121, p. 111596, 2021.
    [95] H. Wang, J.-Y. Chang, Y. Yang, and L. Wang, "Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters," International Journal of Heat and Mass Transfer, vol. 98, pp. 788-798, 2016.
    [96] X. Zhang, J. Qiu, X. Li, J. Zhao, and L. Liu, "Complex refractive indices measurements of polymers in visible and near-infrared bands," Applied Optics, vol. 59, no. 8, pp. 2337-2344, 2020.
    [97] M. Polyanskiy. (2021, October 13). Optical Constants of Polystyrene. Available: https://refractiveindex.info/?shelf=organic&book=polystyren&page=Zhang
    [98] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. Harlow, United Kingdom: Pearson Education Limited, 2013.
    [99] Z. M. Zhang, Nano/Microscale Heat Transfer (Nanoscience and Technology). New York: Mc Graw-Hill, 2008.
    [100] A. Ponyavina, S. Kachan, and N. Sil’vanovich, "Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals," Journal of the Optical Society of America B, vol. 21, pp. 1866-1875, 2004.
    [101] N. Sultanova, S. Kasarova, and I. Nikolov, "Dispersion properties of optical polymers," Acta Physica Polonica Series A, vol. 116, no. 4, pp. 585-587, 2009.
    [102] Weather Spark. (2021, October 11). November 2020 Weather History in Hsinchu. Available: https://tw.weatherspark.com/h/m/135340/2020/11/%E6%96%B0%E7%AB%B9%E5%B8%82%E3%80%81%E5%8F%B0%E7%81%A32020%E5%B9%B411%E6%9C%88%E6%AD%B7%E5%8F%B2%E5%A4%A9%E6%B0%A3#Figures-Humidity
    [103] E. G. Bortchagovsky, A. Dejneka, L. Jastrabik, V. Z. Lozovski, and T. O. Mishakova, "Deficiency of standard effective-medium approximation for ellipsometry of layers of nanoparticles," Journal of Nanomaterials, vol. 2015, pp. 1-8, 2015.
    [104] D. A. G. Bruggeman, "Calculation of various physical constants of heterogeneous substances. I. Dielectric," Annalen der Physik, vol. 24, pp. 636-679, 1935.
    [105] V. Kuzmiak, E. G. Bortchagovsky, P. Markos, V. Z. Lozovski, T. O. Mishakova, and T. Szoplik, "Model for the effective medium approximation of nanostructured layers with the account of interparticle interactions," Proceedings of SPIE, vol. 8070, p. 807018, 2011.
    [106] E. D. Palik, Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998.
    [107] F. Wooten, Optical Properties of Solids, 1st ed. New York: Academic Press, 1972.
    [108] P. Michel, J. Dugas, J. M. Cariou, and L. Martin, "Thermal variations of refractive index of PMMA, polystyrene, and poly (4-methyl-1 -pentene)," Journal of Macromolecular Science, Part B, vol. 25, no. 4, pp. 379-394, 1986.
    [109] S. G. Warren and R. E. Brandt, "Optical constants of ice from the ultraviolet to the microwave: a revised compilation," Journal of Geophysical Research, vol. 113, no. D14, p. D14220, 2008.
    [110] Y.-H. Chen, F.-Y. Shih, M.-T. Lee, Y.-C. Lee, and Y.-B. Chen, "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, vol. 193, p. 116812, 2020.
    [111] A. W. T. Barenbrug, Psychrometry and Psychrometric Charts, 3rd ed. Cape Town: Cape and Transvaal Printers Ltd., 1974.
    [112] K. S. Wong, L. Lee, Y. M. Hung, L. Y. Yeo, and M. K. Tan, "Lamb to Rayleigh wave conversion on superstrates as a means to facilitate disposable acoustomicrofluidic applications," Analytical Chemistry, vol. 91, no. 19, pp. 12358-12368, 2019.
    [113] W.-d. Yang, C.-y. Liu, Z.-y. Zhang, Y. Liu, and S.-d. Nie, "One step synthesis of uniform organic silver ink drawing directly on paper substrates," Journal of Materials Chemistry, vol. 22, no. 43, p. 23012, 2012.
    [114] D. A. Markov, E. M. Lillie, S. P. Garbett, and L. J. McCawley, "Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions," Biomedical Microdevices, vol. 16, no. 1, pp. 91-96, 2014.

    無法下載圖示 全文公開日期 2025/01/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE