簡易檢索 / 詳目顯示

研究生: 楊孟翰
Yang, Meng-Han
論文名稱: 微流懸吊式液滴裝置的發展之細胞在三維環境下的細胞培養
Development of a microfluidic hanging droplet platform for 3D cell culture
指導教授: 陳致真
Chen, Chih-Chen
口試委員: 孫珍理
Sun, Chen-Li
張晃猷
Chang, Hwan-You
陳致真
Chen, Chih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 懸吊液滴培養法三維細胞培養微流道生醫晶片
外文關鍵詞: hanging drop method, three-dimensional cell culture, microfluidics, lab-on-a-chip
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞培養是生物與醫學研究不可或缺的一項技術。一般的細胞培養方法將細胞置於培養皿中並提供培養液供細胞生長。在這樣的環境之下,大多數的細胞會附著在培養皿的底面形成單一層細胞的二維結構。然而生物體內的細胞是以三維結構方式生長,並且和其周圍細胞與細胞外間質(extracellular matrix)有緊密的互動。也因此,許多學者認為讓細胞在三維的培養環境中進行實驗所獲得的結果,較能代表細胞在體內的真實行為。然而傳統三維細胞培養技術仍存在許多限制必須克服,才能有效實現三維細胞培養之應用。
    本論文希望發展一項新穎的"微流懸吊式液滴(Microfluidic Hanging Droplet) "細胞培養技術,傳統懸吊式液滴技術是藉由將細胞培養在懸掛倒吊的水滴中,由水的表面張力和細胞的自我聚集(aggregate)能力導致3D的細胞生長結構。相較於其他的3D培養細胞方法,懸吊式液滴培養方法有著成本便宜、操作原理簡單、對外開放空間和方便觀測生長中的細胞等許多優點。然而傳統的懸吊式液滴技術每個液滴能夠提供給細胞養分的培養液有限,也因此細胞在液滴內生長的時間也受到限制。因此為了克服傳統懸吊式液滴技術的瓶頸,本論文希望發展一項新穎的”微流懸吊式液滴(Microfluidic Hanging Droplet)”細胞培養技術,我們將懸吊式液滴培養方法和微流道技術做結合,利用穿透微流道底部的孔洞形成懸吊液滴,並以擴散方式讓液滴內細胞生長所需的養分與產生之代謝物和微流道內流動的培養液進行置換。 由於孔洞大小為微米等級,成型的液滴不會輕易的破裂或溢出,並且能以流速之方式加以控制。
    本論文所發展之微流懸吊式液滴技術不但可以解決傳統懸吊式液滴培養方式無法持續供給新鮮培養液問題,並能大量增加實驗之通量。我們將液珠形成之物理行為進行理論與實驗分析,在完成液珠形成控制方法之建立後,導入細胞株細胞進行細胞培養與測試。


    圖錄 表錄 第一章 前言 1.1 研究背景 1.2 研究動機與願景 第二章 文獻回顧 2.1 二維和三維培養環境的比較 2.1.1 三維培養環境的重視 2.1.2 二維和三維環境下培養細胞的差異 2.2改良型懸吊式液滴培養裝置 2.2.1 增加液滴體積 2.2.2 可置換培養液系統 第三章 研究方法 3.1 設計概念 3.2 元件製程 3.2.1 光罩設計 3.2.2 黃光微影製程 3.2.3 高分子材料夾鉗翻模(Clamp-molding) 3.2.4 氧電漿處理接合 3.3 實驗設置 3.3.1 液滴成形截面圖 3.3.2 液滴最大承受壓力測試 3.3.3 實驗細胞的準備 3.3.4 微流懸吊液滴裝置細胞培養操作 第四章 研究結果 4.1 微流懸吊液滴晶片製作結果 4.1.1 矽晶圓母模製作結果 4.1.2 PDMS晶片製作結果 4.2 液滴成型實驗結果 4.2.1 孔徑500 µm流道壓力測試結果 4.2.2 孔徑200 µm流道壓力測試結果 4.3 細胞培養結果 4.3.1螢光粒子(Fluorescent beads)載入結果 4.3.2細胞載入結果 4.3.3 長時間細胞培養結果 第五章 結論與討論 5.1 總結 5.2 問題解決和分析 5.3 應用的想法 5.4 需改進的地方 參考資料

    1. Komvopoulos, K., Surface engineering and microtribology for microelectromechanical systems. Wear, 1996. 200(1-2): p. 305-327.
    2. Ho, C.M. and Y.C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics, 1998. 30: p. 579-612.
    3. Judy, J.W., Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials & Structures, 2001. 10(6): p. 1115-1134.
    4. Verpoorte, E. and N.F. De Rooij, Microfluidics meets MEMS. Proceedings of the Ieee, 2003. 91(6): p. 930-953.
    5. Stone, H.A., A.D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004. 36: p. 381-411.
    6. Buriak, J.M., Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chemical Communications, 1999(12): p. 1051-1060.
    7. Gad-el-Hak, M., The fluid mechanics of microdevices - The Freeman Scholar Lecture. Journal of Fluids Engineering-Transactions of the Asme, 1999. 121(1): p. 5-33.
    8. Voldman, J., M.L. Gray, and M.A. Schmidt, Microfabrication in biology and medicine. Annual Review of Biomedical Engineering, 1999. 1: p. 401-425.
    9. Miller, D.J., Sydney Ringer; physiological saline, calcium and the contraction of the heart. Journal of Physiology-London, 2004. 555(3): p. 585-587.
    10. S, R., Regarding the action of hydrate of soda, hydrate of ammonia, and hydrate of potash on the ventricle of the frog's heart. Journal of Physiology, 1882. 3: p. 195–202.
    11. Hamburger, V., Wilhelm Roux: Visionary with a blind spot. Journal of the History of Biology, 1997. 30(2): p. 229-238.
    12. Roux, W., Beitrage zur Entwickelungsmechanik des Embryo. Beitrag II. Ueber die Entwickelung der Froscheier bei Aufhebung der richtenden Wirkung der Schwere. Gesammelte Abhandlungen Entwickelungsmechanik der Organismen, 1884. 2: p. 256–276.
    13. Haines, D.E. and B. Franklin, Ross Granville Harrison (1870-1959): The "hanging drop method" and the Nobel Prize. Faseb Journal, 2000. 14(4): p. A551-A551.
    14. Harrison, R.G., Observations on the living developing nerve fiber. Proceedings of the Society for Experimental Biology and Medicine, 1907. 4: p. 140-143.
    15. Harrison, R.G., The outgrowth of the nerve fiber as a mode of protoplasmic movement. Journal of Experimental Zoology, 1910. 9(4): p. 787-846.
    16. Liu, H. and K. Roy, Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Engineering, 2005. 11(1-2): p. 319-330.
    17. Tung, Y.C., et al., High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011. 136(3): p. 473-478.
    18. Bokhari, M., et al., Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge. Journal of Anatomy, 2007. 211(4): p. 567-576.
    19. Dontu, G., et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 2003. 17(10): p. 1253-1270.
    20. Papapetropoulos, A., et al., Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. Journal of Clinical Investigation, 1997. 100(12): p. 3131-3139.
    21. Itami, S., et al., Co-culturing of follicles with interstitial cells in collagen gel reproduce follicular development accompanied with theca cell layer formation. Reproductive Biology and Endocrinology, 2011. 9: 159.
    22. Gallego-Perez, D., et al., High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Lab on a Chip, 2010. 10(6): p. 775-782.
    23. Hakanson, M., M. Textor, and M. Charnley, Engineered 3D environments to elucidate the effect of environmental parameters on drug response in cancer. Integrative Biology, 2011. 3(1): p. 31-38.
    24. Leong, T.G., et al., Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells. Lab on a Chip, 2008. 8(10): p. 1621-1624.
    25. Ochsner, M., et al., Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab on a Chip, 2007. 7(8): p. 1074-1077.
    26. Zhu, H., et al., Analysis of yeast protein kinases using protein chips. Nature Genetics, 2000. 26(3): p. 283-289.
    27. Sakai, Y., Y. Yoshiura, and K. Nakazawa, Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. Journal of Bioscience and Bioengineering, 2011. 111(1): p. 85-91.
    28. Yamada, T., et al., In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells, 2002. 20(2): p. 146-154.
    29. Lee, W.G., et al., A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods. Tissue Engineering Part C-Methods, 2010. 16(2): p. 249-259.
    30. Cukierman, E., et al., Taking cell-matrix adhesions to the third dimension. Science, 2001. 294(5547): p. 1708-1712.
    31. Sharma, G.T., P.K. Dubey, and S.K. Meur, Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system. Animal Reproduction Science, 2009. 114(1-3): p. 115-124.
    32. Abbott, A., Cell culture: Biology's new dimension. Nature, 2003. 424(6951): p. 870-872.
    33. Weaver, V.M., et al., Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. Journal of Cell Biology, 1997. 137(1): p. 231-245.
    34. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184.
    35. Lorenz, H., et al., High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators a-Physical, 1998. 64(1): p. 33-39.
    36. Kupka, R.K., et al., Microfabrication: LIGA-X and applications. Applied Surface Science, 2000. 164: p. 97-110.
    37. Hsu, C.H., C.C. Chen, and A. Folch, "Microcanals" for micropipette access to single cells in microfluidic environments. Lab on a Chip, 2004. 4(5): p. 420-424.
    38. Jo, B.H., et al., Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems, 2000. 9(1): p. 76-81.
    39. Fox, R.W., P.J. Pritchard, and A.T. McDonald, Introduction To Fluid Mechanics. 6 ed., 1994. Wiley.
    40. Majno, G. and I. Joris, Apoptosis, Oncosis, and Necrosis - an Overview of Cell-Death. American Journal of Pathology, 1995. 146(1): p. 3-15.
    41. Liminga, G., et al., On the mechanism underlying calcein-induced cytotoxicity. European Journal of Pharmacology, 1999. 383(3): p. 321-329.
    42. Dimmeler, S., et al., Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. Journal of Experimental Medicine, 1997. 185(4): p. 601-607.
    43. Lawrence, M.B. and T.A. Springer, Leukocytes Roll on a Selectin at Physiological Flow-Rates - Distinction from and Prerequisite for Adhesion through Integrins. Cell, 1991. 65(5): p. 859-873.
    44. Topper, J.N., et al., Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(19): p. 10417-10422.
    45. Ghassemi, H., S.W. Baek, and Q.S. Khan, Experimental study on binary droplet evaporation at elevated pressures and temperatures. Combustion Science and Technology, 2006. 178(6): p. 1031-1053.
    46. Yu, Y., et al., Evaporation and Deposition Coverage Area of Droplets Containing Insecticides and Spray Additives on Hydrophilic, Hydrophobic, and Crabapple Leaf Surfaces. Transactions of the Asabe, 2009. 52(1): p. 39-49.
    47. Friedrich, J., et al., Spheroid-based drug screen: considerations and practical approach. Nature Protocols, 2009. 4(3): p. 309-324.
    48. Kim, C., et al., 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab on a Chip, 2011. 11(5): p. 874-882.
    49. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation, 2001. 108(3): p. 407-414.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE