簡易檢索 / 詳目顯示

研究生: 謝鎮陽
Cheng-Yang Hsieh
論文名稱: 銲點之X-ray 斷層顯像技術中殘影效應之分析
Shadowing Effect of X-ray Laminography in Solder Joint Inspection
指導教授: 彭明輝
Ming-Hwei Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: X射線層析攝影合成殘影效應自動光學檢測
外文關鍵詞: X-ray computed tomosynthesis, shadowing effect, Automated Optical Inspection
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統層析X射線攝影合成(X-ray computed tomosynthesis)應用於工業檢測下所建立之剖面影像因殘影效應(shadowing effect)的發生,無法準確判斷瑕疵或真實材料的邊界所在位置。
    過去對殘影效應之認知主要建立在實驗影像或模擬影像的定性觀察,本研究推導殘影效應之影響範圍公式,首先探討單一薄板之殘影效應,並建立殘影效應之等效模型,由公式面驗證過去實驗觀察而知的特性;接著利用單層薄板之結論,推廣至連續體軸對稱材料(圓球)狀之殘影效應分析,將球體內外任意點殘影效應之厚度公式化,並比較所推導之公式與實際模擬影像殘影厚度之差距,以修正其誤差。
    本研究亦將利用所推導之厚度公式,發展一方法以偵測瑕疵與真實材料所在位置之上下界,以解決過去無法從X射線剖面影像檢測中直接推估元件或瑕疵所在位置之問題。


    第一章 簡介 1 1.1 問題背景與研究動機 1 1.2 文獻回顧 4 1.2.1 濾波背投影法(Filtered back-projection) 5 1.2.2 代數重建法(Algebraic Reconstruction Technique) 7 1.2.3 薄層成像法(Laminography)的基本原理 9 1.3 研究範圍與論文架構 12 第二章 幾何投影法 14 2.1 旋轉式薄層成像法介紹 14 2.2 任意角度之剖面重建 15 2.3 任意高度之剖面重建 17 2.4 電腦模擬結果 19 第三章 殘影效應之範圍與厚度 22 3.1 單一薄板之強殘影效應 22 3.1.1 強殘影效應之影響範圍公式推導 22 3.1.2 強殘影效應之等效模型 42 3.2 連續體材料之強殘影效應 45 3.2.1 兩平行薄板之強殘影效應 45 3.2.2 軸對稱連續體材料之強殘影效應 47 3.3 連續體材料之強殘影效應厚度公式推導 55 3.3.1 圓球內已知點之強殘影效應厚度公式 58 3.3.2 圓球外已知點之強殘影效應厚度公式 68 第四章 模擬結果與討論 78 4.1 強殘影效應之厚度分析 78 4.1.1 圓球有效強殘影效應範圍之驗證 78 4.1.2 強殘影厚度與真實剖面影像之差異 81 4.2 瑕疵所在位置之上下限 88 4.3 結果討論 92 第五章 結論 94 5.1 本研究之貢獻 94 5.2 未來發展方向 94 參考文獻 96

    [1] Z. des Plantes, “Eine neue Method zur Differenzierung der Röntgenographie,” Acta Radiol, Vol. 19, No. 2, pp. 182-192, 1932.
    [2] Avinash C. Kak, and M. Slaney, “Principles of Computerized Tomographic Imaging,” IEEE Press, 1988.
    [3] 李國翔,含BGA電路板之X光3D影像重建技術,國立清華大學碩士論文,2005.
    [4] 高欣,新型迭代圖像重建算法的理論研究與實現,浙江大學博士論文,2004.
    [5] S. T. Kang, and H. S. Cho, “A projection method for reconstructing X-ray images of arbitrary cross-section,” NDT&E International, Vol. 32, No. 1, pp. 9-20, 1999.
    [6] S. M. Rooks, B. Benhanin, and K. C. Smith, “Development of inspection process for ball-grid-array technology using scanned-beam X-ray laminography,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 18, No. 4, pp. 851-861, 1995.
    [7] James T. Dobbins III, and Devon J. Godfrey, “Digital X-ray Tomosynthesis: Current state of the art and clinical potential,” Physics in Medicine and Biology, Vol. 48, No. 19, pp. 65-106, 2003.
    [8] Y. J. Roh, K. W. Koh, H. S. Cho, H. C. Kim, H. Joo, S. K. Kim, “Inspection of ball grid array (BGA) solder joints using X-ray cross-sectional images,” Proceedings of SPIE – The International Society for Optical Engineering, Vol. 3836, pp. 168-178, 1999.
    [9] Y. J. Roh, K. W. Koh, H. S. Cho, J. Y. Kim, H. C. Kim, J. E. Byun, “The calibration of X-ray digital tomosynthesis system including the compensation of the image distortion,” Proceedings of SPIE – The International Society for Optical Engineering, Vol. 3521, pp. 248-259, 1998.
    [10] Y. J. Roh et al, “Correcting image distortion in the X-ray digital tomosynthesis system for PCB solder joint inspection,” Image and Vision Computing, Vol. 21, pp. 1063-1075, 2003.
    [11] Thomas D. Moore, D. Vanderstraeten, and Pia M. Forssell, “Three-dimensional X-ray Laminography as a Tool for Detection and Characterization of BGA Package Defects,” IEEE Transactions on Components And Packaging Technologies, Vol. 25, No. 2, pp. 224-229, 2002.
    [12] S. Gondrom, and S. Schröpfer, “Digital Computed Laminography and Tomosynthesis – Functional Principles and Industrial applications,” Proc. Int. Symp. Comput. Tomography Ind. Applicat. Image Process. Radiology, Vol. 4, No. 7, pp. 75-81, 1999.
    [13] S. Black, “Generating Three Dimensional Models of Solder Joints Using X-ray Laminography,” Electronics Manufacturing Technology Symposium, Thirteenth IEEE/CHMT International, pp. 191-194, 1992.
    [14] D. Meyer-Ebrecht, and H. Weiss, “Tomosynthesis – 3D X-ray imaging by means of holography or electronics,” Modern Optics, Vol. 24, No. 4, pp. 293-303, 1977.
    [15] 陳宏吉,應用X射線薄層描繪法於PCB與BGA檢測之研究,國立清華大學碩士論文,2007.
    [16] H. P. Hiriyannaiah, “X-ray Computed Tomography for Medical Imaging,” IEEE Signal Processing Magazine, Vol. 14, No. 2, pp. 42-59, 1997.
    [17] D. J. Godfrey, R. J. Warp, and J. T. Dobbins, “Optimization of matrix inverse tomosynthesis,” Proceedings of SPIE – The International Society for Optical Engineering, Vol. 4320, pp. 696-704, 2001.
    [18] D. J. Godfrey, R. J. Warp, and J. T. Dobbins, “Practical strategies for the clinical implementation of matrix inversion tomosynthesis (MITS),” Proceedings of SPIE – The International Society for Optical Engineering, Vol. 5030, pp. 379-390, 2003.
    [19] C. Neubauer, “Intelligent X-ray Inspection for Quality Control of Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part C, Vol. 20, No. 2, pp. 111-120, 1997.
    [20] W. A. Kalender, “Review: X-ray computed tomography,” Physics in Medicine and Biology, Vol. 51, pp. 29-43, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE