簡易檢索 / 詳目顯示

研究生: 羅文甫
Lo, Wen-Fu
論文名稱: 金奈米柱與金/硒化鎘核殼結構的合成及鑑定
Synthesis and characterization of gold nanorods and Au/CdSe core-shell nanorods
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 黃暄益
曾院介
段興宇
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 57
中文關鍵詞: 金奈米柱殼核結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要
    本篇論文以銀輔助成長的質晶法來合成並且進行金奈米柱的軸徑比控制,在銀輔助成長的質晶法控制下,可以進行軸徑比1.8~5的金奈米柱合成。其中我們選擇了軸向表面電漿共振特徵波峰約750~800nm金奈米柱進行金-硒化鎘奈米柱核殼結構的合成。採用陽離子交換程序下,我們控制了金-硒化鎘奈米柱核殼結構合成中三個主要的階段性包覆合成:(1)金-銀奈米柱核殼結構合成 -> (2)金-硒化銀奈米柱核殼結構合成 ->(3)金-硒化鎘奈米柱殼結構合成。
    過程中我們選用了以聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)與十六烷基三甲基溴化胺 (C16TAB)做為合成金-銀奈米柱核殼結構主要面活性劑以達到較均勻的銀殼層包覆,並控制其殼層厚度約在3奈米用以進行階段(2)的合成;而在金-硒化銀奈米柱核殼結構合成中,我們選用硒脲作為硒的來源,並控制其劑量維持殼層厚度,最後在高解析度TEM與XRD檢測下確認合成出金-硒化銀奈米柱核殼結構;在階段(3)中我們利用陽離子交換技術使得已形成的硒化銀殼層經交換後形成硒化鎘殼層並藉由再形成的硒化鎘來增加殼層厚度。


    Abstract
    In this study,we use the silver-assisted method to synthesis gold nanorods and control the aspect ratio. Under this kind of seed-mediated growth, we can tune the aspect ratio from 1.8 to 5. Among those gold nanorods we synethsis, we choose gold nanorods with longitudinal surface resonance wavelength between 750nm to 800nm as the seed for synthesizing Au-CdSe core-shell nanorods.In order to adapt cation exchange process, we have to control three major steps:(1)Au-Ag core-shell nanorods synthesis (2) Au-Ag2Se core-shell nanorods synthesis (3) Au-CdSe core-shell nanorods synthesis.
    In step (1), To get well coverage of Ag shell, we choose PVP and C16TAB as the ligand for synthsizing Au-Ag core-shell nanorods. As the result, we can control the shell thickness at about 3 nm for next step synthesis. In step(2), we choose selenourea as the source for producing Ag2Se shell,meanwhile in the expect of maintain the shell structure, we also control the amount of selenourea we use. By characterizing with HR-TEM and XRD, we finally confirm the heterostructure we produce is Au-Ag2Se core-shell nanorod. In last step, we perform the cation exchange process for transforming Ag2Se shell to CdSe, also increasing the CdSe shell thickness.

    目錄 論文摘要 1 Abstract 2 目錄 3 圖目錄 4 第一章 文獻回顧 6 1-1金的奈米材料發展 6 1-1.1金奈米粒子與金奈米柱發展 7 1-1.2金奈米柱的合成(電化學、光化學、植晶法) 8 1-2金奈米柱的應用 14 1-3貴重金屬複合物發展 16 1-4 金屬-半導體異質奈米結構合成 18 1-5研究動機 19 第二章 實驗方法與步驟 20 2-1材料 20 2-2金奈米柱合成與軸徑比控制 21 2-2.1晶種溶液準備 21 2-2.2生長溶液準備與奈米柱合成 21 2-3 GNR@CdSe核殼結構奈米柱合成 22 2-3.1 GNR@Ag核殼結構合成 22 2-3.2 GNR@Ag2Se核殼結構合成 22 2-3.3 GNR@CdSe核殼結構合成 23 2-4 儀器 23 第三章 結果與討論 24 3-1 GNR的合成與軸徑比控制 25 3-2 GNR@Ag的合成 30 3-3 GNR@Ag2Se合成 34 3-4 GNR@CdSe合成及鑑定 40 第四章 結論與未來展望 48 參考文獻 49

    參考文獻
    1. Edwards, P.P.;Thomas, J.M. Angew. Chem., Int. Ed. 2007,46,5480

    2.Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60

    3. Yin HZ, He XW, Liu H, Li WY, Chen LX (2005) Chin J Anal Chem 33:939–942

    4. Olkhov RV, Shaw AM (2008) Biosens Bioelectron 23:1298–1302 doi:10.1016/j.bios.2007.11.023

    5. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    6. Wilcoxon, J. P., Martin, J. E., Parsapour, F., Wiedenman, B. & Kelley, D. F.(1998) J. Chem. Phys. 108, 9137–9143.

    7. Mohamed, M. B., Volkov, V., Link, S. & El-Sayed, M. A. (2000) Chem. Phys.Lett. 317, 517–523.

    8. Peyser, L. A., Lee, T. H.&Dickson, R. M. (2002) J. Phys. Chem. B 106, 7725–7728.

    9. Bouhelier, A., Beversluis, M. R. & Novotny, L. (2003) Appl. Phys. Lett. 83,5041–5043. 51

    10. Beversluis, M. B., Bouhelier, A. & Novotny, L. (2003) Phys. Rev. B Condens. Matter Mater. Phys. 68, 115433.

    11. Drachev, V. P., Khaliullin, E. N., Kim, W., Alzoubi, F., Rautian, S. G., Safonov,V. P., Armstrong, R. L. & Shalaev, V. M. (2004) Phys. Rev. B Condens. Matter Mater. Phys. 69, 035318.

    12. Imura, K., Nagahara, T. & Okamoto, H. (2004) J. Am. Chem. Soc. 126, 12730–12731.

    13. S. Link, M. A. El-Sayed, J. Phys. Chem. B 2005, 109, 10531–10532.

    14. K.-S. Lee, M. A. El-Sayed, J. Phys. Chem. B 2006, 110,
    19220–19225.

    15. C.-Z. Li, K. B. Male, S. Hrapovic, J. H. T. Luong, Chem. Commun.2005, 3924–3926.

    16. S. Eustis, M. A. El-Sayed, J. Phys. Chem. B 2005, 109,16350–16356.

    17. A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L.A. Trachuk, A. G. Melnikov, N. G. Khlebtsov, Appl. Optics 2005, 44, 6285–6295.

    52

    18. J. Zhu, L. Huang, J. Zhao, Y. Wang, Y. Zhao, L. Hao, Y. Lu, Mater. Sci. Eng. B 2005, 121, 199–203

    19. X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115–2120.

    20. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, J. X. Cheng, Proc. Natl. Acad. Sci. USA 2005, 102, 15752–15756.

    21. T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, A. Wei, Langmuir 2007, 27, 1596–1599.

    22. M. Gluodenis, C. A. Foss, Jr, J. Phys. Chem. B 2002, 106, 9484–9489

    23. Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C.R. J.Phys. Chem. B 1997, 101, 6661

    24.Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R.C. Langmuir 1999, 15, 701

    25.Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316

    26.Murphy, C. J.; Gole, A. M.; Hunyadi, S. e.; Orendorff, C. J. Irong. Chem. 2006, 45, 7544 53

    27.Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617

    28.Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065

    29.Murphy, C. J., N. R. Adv. Mater. 2002, 14, 80

    30.Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648

    31.Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633

    32. Christopher J. Orendorff and Catherine J. Murphy, J. Phys. Chem. B, 2006, 110 (9), 3990–3994

    33.Huang, X.; Elsayed, I. H.; Qian, W.; Elsayed, M. A. J. Am Chem. Soc. 2006, 128, 2115

    34. R. Weissleder, Nat. Biotechnol. 2001, 19, 316–317.

    35.Chen, C. C.; Lin, Y -P.; Wang, C. -W.; Tzeng, H. -C.; Wu, C -H.; Chen, Y. -C.; Chen, C.-P.; Chen, L.-C.; Wu, Y.-C. . Am. Chem. Soc. 2006, 128, 3709

    36.Ling, B., Y. Wen, Yu, Z. Q.Yu, Y. H. Yang, H. F. J. Materials Chemistry, 2011, 21(12): 4623-4628 54

    37.Jakob, M., H. Levanon, Kamat, P. V., Nano Letters 2003,3(3): 353-358.

    38.Subramanian, V., E. E. Wolf, Kamat, P. V.. J. Am Chem. Soc. 2004, 126(15): 4943-4950.

    39.(Tian and Tatsuma 2005), J. Am Chem. Soc. 2005, 127(20):
    7632-7637.

    40.(Awazu, Fujimaki et al. 2008), J. Am Chem. Soc. 130(5): 1676-1680.

    41.(Formo, Lee et al. 2008), Nano Letters 2008, 8(2): 668-672.

    42.(Okamoto, Niki et al. 2004), Nature Materials 3(9): 601-605

    43.(Mokari, Rothenberg et al. 2004), Science 304(5678): 1787-1790.

    44.(Hasobe, Imahori et al. 2005) , J. Am Chem. Soc.,2005, 7(4): 1216-1228.

    45.(Akimov, Mukherjee et al. 2007), Nature 2007, 450(7168): 402-406.

    46.(Dawson and Kamat 2001), J. Phys. Chem. B, 2001, 105(5): 960-966.

    55

    47.(Lee, Hernandez et al. 2007), Nature Materials, 2007, 6(4): 291-295.

    48.(Costi, Saunders et al. 2008), Nano Letters, 2008, 8(2), 637-641

    49.(Lin, Chen et al. 2006), Applied Physics Letters, 2006, 88(16)

    50.(Lee, Shevchenko et al. 2008), J. Am Chem. Soc., 2008, 130(30)

    51. Sun, Z. H., Z. Yang, Z. Zhou, J. H. Yeung, M. H. Ni, W. H. Wu, H. K.
    Wang, J. F., Angewandte Chemie-International Edition, 2009,48(16): 2881-2885.

    52.(Chen, Yang et al. 2008), J. Chem. Mater., 2008, 20(23): 7204-7206.

    53.(Robinson, Sadtler et al. 2007), Science, 2007, 317(5836), 355-358

    54. A. L. So . Efros, Phys. Semicond. 1982, 16, 772.

    55. Brus, L. J. Phys. Chem. B, 1986, 90, 2555.

    56.Bishnu P. Khanal and Eugene R. Zubarev, J. Am. Chem. Soc., 2008, 130 (38), pp 12634–12635

    57.Susie Eustis and Mostafa El-Sayed, J. Phys. Chem. B, 2005, 109 (34),pp 16350–16356 56

    58. Babak Nikoobakht and Mostafa A. El-Sayed, J. Chem. Mater., 2003, 15 (10), pp 1957–1962

    59.Brioude, A.; Jiang, X. C.; Pilen, M.P. J. Phys. Chem. B 2005, 109, 13138

    60.Wu, H.-Y.; Chu, H-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 644721

    61.Wu, H.-Y.; Huang, W.-L.; Huang, M. H. Crysta. Growth Des. 2007, 7, 831

    62.(Liu and Guyot-Sionnest 2004), J. Phys. Chem. B, 2004, 108(19): 882-5888.

    63.(Huang, Yang et al. 2004)Z. S. Chang, H. T., Langmuir 2004, 20(15): 6089-6092.

    64.Kreibig, U.; Vollmer, M. Optical Properties of Metal
    Clusters;Springer-Verlag: Berlin, 1995

    65.Kim, Y.; Johnson, R. C.; Li, J.; Hupp, J. T.; Schatz, G. C. Chem.Phys. Lett. 2002, 352, 421 57

    66.(Liu and Guyot-Sionnest 2006), J. Mater Chem., 2006, 16(40): 3942-3945.

    67. U. Jeong and Y. Xia, Angew. Chem., Int. Ed., 2005, 44, 3099.

    68. Dong Hee Son, Steven M. Hughes, Yadong Yin1
    and A. Paul Alivisatos, Science, 2004, 306(5698):1009-1012

    69. Hankare, P. P.; Bhuse, V. M.; Garadkar, K. M.; Delekar, S. D.; Mulla,I. S. Mater. Chem. Phys. 2003, 82, 711.

    70. Mauro Epifani, Cinzia Giannini, Liberato Manna,, material letters, 2004, 58, 2429– 2432

    71. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth and Characterization (CRC press, New York, 2007).

    72. Danielle K. Smith, Nathan R. Miller, Brian A. Korgel, Langmuir, 2009, 25 (16), pp 9518–9524

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE