研究生: |
魏福村 Fu-Tsun Wei |
---|---|
論文名稱: |
德林費模上的結構 On Structures of Drinfeld Modules |
指導教授: |
于靖
Jing Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 24 |
中文關鍵詞: | 德林費模 |
外文關鍵詞: | Drinfeld Module |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Let $k$ be a function field over finite field $\mathbb{F}_q$ and
let $A$ be the ring consisting of elements of $k$ regular away from a fixed place $\infty$ of $k$.
Let $\phi$ be a Drinfeld $A$-module over a finite field $L$.
We define the Frobenius torus of $\phi$ by similar way with the case of elliptic curves
and study the structure when the rank of $\phi$ equal to $2,3$.
For Drinfeld $A$-module $\phi$ over $K$ where $K/k$ is a finite separable extension,
we define the $v$-adic representations of $Gal(K^s/K)$.
When the rank of $\phi$ equal to $1$, we define the cyclotomic characters
and discuss the case of $sgn$-normalized rank $1$ Drinfeld module
and the special case of Carlitz module.
[1] Andre Weil
Adeles and Algebraic Groups.
Boston; Basel; Stuttqart : Birkhauser, 1982.
[2] David Goss
Basic Structures of Function Field Arithmetic.
[3] Ernst-Ulrich Gekeler
On Finite Drinfeld Modules
J. Algebra 141, 1991, 187-203.
[4] James E. Humphreys
Linear Algebraic Groups.
Springer-Verlag, New York Heidelberg Berlin.
[5] Joseph H. Silverman
The Arithmetic of Elliptic Curves.
Springer-Verlag, New York Berlin Heidelberg Tokyo, 1986.
[6] Michael Rosen
Number Theory in Function Fields.
GTM 210. Springer-Verlag, New York, 2002.
[7] Nathan Jacobson
Basic Algebra I.
Freeman, 1980.
[8] Nathan Jacobson
Basic Algebra II.
Freeman, 1980.
[9] Pierre Deligne
Survey of Drinfeld Modules.
Contemporary Mathematics, Volume 67, 1987.
[10] Toyofumi Takahashi
Good Reduction of Elliptic Modules.
J. Math. Soc. Japan, Vol. 34}, No.3, 1982.