簡易檢索 / 詳目顯示

研究生: 魏福村
Fu-Tsun Wei
論文名稱: 德林費模上的結構
On Structures of Drinfeld Modules
指導教授: 于靖
Jing Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 24
中文關鍵詞: 德林費模
外文關鍵詞: Drinfeld Module
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Let $k$ be a function field over finite field $\mathbb{F}_q$ and
    let $A$ be the ring consisting of elements of $k$ regular away from a fixed place $\infty$ of $k$.
    Let $\phi$ be a Drinfeld $A$-module over a finite field $L$.
    We define the Frobenius torus of $\phi$ by similar way with the case of elliptic curves
    and study the structure when the rank of $\phi$ equal to $2,3$.
    For Drinfeld $A$-module $\phi$ over $K$ where $K/k$ is a finite separable extension,
    we define the $v$-adic representations of $Gal(K^s/K)$.
    When the rank of $\phi$ equal to $1$, we define the cyclotomic characters
    and discuss the case of $sgn$-normalized rank $1$ Drinfeld module
    and the special case of Carlitz module.


    1. Restriction of the Base Field--------------------------1 2. Frobenius Tori of Elliptic Curves over Finite Field----2 2.1 Definition and Basic Theory------------------------2 2.2 Frobenius Tori-------------------------------------6 3. Frobenius Tori of Drinfeld Modules of Finite A-Characteristic--------------------------------------------8 3.1 Definiton and Basic Theory-------------------------8 3.2 Frobenius Tori-----------------------------------13 4. v-Adic Representations Attached to Drinfeld Modules---17 4.1 Definition and Basic Theory-----------------------17 4.2 Drinfeld Modules and v-Adic Representations-------19 4.3 Cyclotomic Characters-----------------------------20 5. References--------------------------------------------24

    [1] Andre Weil
    Adeles and Algebraic Groups.
    Boston; Basel; Stuttqart : Birkhauser, 1982.

    [2] David Goss
    Basic Structures of Function Field Arithmetic.

    [3] Ernst-Ulrich Gekeler
    On Finite Drinfeld Modules
    J. Algebra 141, 1991, 187-203.

    [4] James E. Humphreys
    Linear Algebraic Groups.
    Springer-Verlag, New York Heidelberg Berlin.

    [5] Joseph H. Silverman
    The Arithmetic of Elliptic Curves.
    Springer-Verlag, New York Berlin Heidelberg Tokyo, 1986.

    [6] Michael Rosen
    Number Theory in Function Fields.
    GTM 210. Springer-Verlag, New York, 2002.

    [7] Nathan Jacobson
    Basic Algebra I.
    Freeman, 1980.

    [8] Nathan Jacobson
    Basic Algebra II.
    Freeman, 1980.

    [9] Pierre Deligne
    Survey of Drinfeld Modules.
    Contemporary Mathematics, Volume 67, 1987.

    [10] Toyofumi Takahashi
    Good Reduction of Elliptic Modules.
    J. Math. Soc. Japan, Vol. 34}, No.3, 1982.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE