簡易檢索 / 詳目顯示

研究生: 蘇育毅
Su, Yu-Yi
論文名稱: 動態終止卷積類神經網路中乘積累加運算之方法
Dynamic Early Terminating of Multiply-Accumulate Operation for Convolutional Neural Networks
指導教授: 張世杰
Chang, Shih-Chieh
口試委員: 陳添福
Chen, Tien-Fu
鐘文邦
Zhong, Wen-Bang
陳勇志
Chen, Yung-Chih
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 27
中文關鍵詞: 卷積類神經網路乘積累加運算動態終止
外文關鍵詞: Convolutional neural network, Multiply-accumulate operation, Dynamic early terminating
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深度學習因其在許多人工智慧應用中取得的巨大成功而引起了學術界與工業界的極大關注。隨著越來越多的應用與開發,在運算資源有限的邊緣終端設備上實現複雜類神經網路模型的需求變得益發重要。因此,我們提出一種新的優化方法以減少卷積類神經網路中的運算量。在這篇論文中我們認為某些卷積運算的輸出結果會因後續的激勵函數或池化層之特性而被浪費。卷積類神經網路中的卷積濾波器本質上會進行一連串乘積累加運算。我們提出的方法試圖在乘積累加運算中設置一系列檢查點,以確定濾波器能否依據該時間點之暫存結果提前終止運算。此外,我們亦探討由於設置檢查點提前終止乘積累加運算而導致的精確度損失之原因,並提出網路參數微調法予以解決。實驗結果顯示,我們提出的方法在兩個經典卷積類神經網路模型中能減少大約50%的乘積累加運算,精確度損失亦僅為1%,並且與以前的方法相比更具有競爭力。


    Deep learning has been attracting enormous attention from academia as well as industry due to its great success in many artificial intelligence applications. As more applications are developed, the need for implementing a complex neural network model on an energy-limited edge device becomes more critical. Thus, this paper proposes a new optimization method for saving the computations of convolutional neural networks (CNNs). The method takes advantage of the fact that some convolutional operations are actually wasteful since their outputs are pruned by the following activation or pooling layers. Basically, a convolutional filter conducts a series of multiply-accumulate (MAC) operations. We propose to set a series of checkpoints in the MAC operations to determine whether a filter could terminate early according to the intermediate result. Furthermore, a fine-tuning process is conducted to recover the accuracy loss due to the applied checkpoints. The experimental results show that the proposed method can save approximately 50% MAC operations with only 1% accuracy loss for two classic CNN models and it is competitive with previous methods.

    1 Introduction 1 2 Related works 5 2.0.1 Parameter pruning and sharing 5 2.0.2 Low-rank factorization 6 3 Proposed method 7 3.0.1 Step 1: Checkpoint determining 8 3.0.2 Step 2: Weight fine-tuning 9 3.0.3 Analysis and discussion on main ideas 9 4 Experimental Results 16 4.0.1 C10-Net 17 4.0.2 NiN 17 4.0.3 Summary 18 5 Conclusion 24 References 25

    [1] Y. Cheng,D.Wang, P. Zhou, and T. Zhang.Model compression and acceleration for
    deep neural networks: The principles, progress, and challenges. 35(1):126–136.
    [2] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
    networks with pruning, trained quantization and huffman coding. arXiv preprint
    arXiv:1510.00149, 2015.
    [3] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
    efficient neural network. In Advances in neural information processing systems,
    pages 1135–1143, 2015.
    [4] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural
    networks. In International Conference on Computer Vision (ICCV), volume 2,
    2017.
    [5] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
    arXiv preprint arXiv:1503.02531, 2015.
    [6] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural
    networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.
    [7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
    and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In
    Proceedings of the 22nd ACM international conference onMultimedia, pages 675–
    678. ACM, 2014.
    [8] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online: http://www. cs.
    toronto. edu/kriz/cifar. html, 2014.
    [9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
    convolutional neural networks. In Advances in neural information processing systems,
    pages 1097–1105, 2012.
    [10] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speedingup
    convolutional neural networks using fine-tuned cp-decomposition. arXiv
    preprint arXiv:1412.6553, 2014.
    [11] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
    convnets. arXiv preprint arXiv:1608.08710, 2016.
    [12] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400,
    2013.
    [13] S. Shi and X. Chu. Speeding up convolutional neural networks by exploiting the
    sparsity of rectifier units. arXiv preprint arXiv:1704.07724, 2017.
    [14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet
    and the impact of residual connections on learning. In AAAI, volume 4, page 12,
    2017.
    [15] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al. Convolutional neural networks with lowrank
    regularization. arXiv preprint arXiv:1511.06067, 2015.

    QR CODE