簡易檢索 / 詳目顯示

研究生: 林孟節
Mung-je Lin
論文名稱: 多重分歧問題之分歧方向計算及解路徑探討
Numerical Investigation for the Compution of Bifurcation Directions and Solutions Path of Multiple Bifurcation Problems
指導教授: 簡國清 博士
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 隱函數定理分歧點切線分歧方程虛擬弧長延拓法
外文關鍵詞: Implicit function theorem, Bifurcation point, Tangent bifurcation equation, Pseudo-arclength continuation method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本論文,旨在探討非線性代數方程組中多重分歧問題之分支點,與多重分歧問題之分支點在分歧點的解分支方向及解分支結構.
    首先,我們以隱函數定理為基礎,推導計算出分支點—即轉彎點或分歧點.接著利用切線分歧方程找出分歧方向.然後,由於在分歧點鄰域上具有多重解.所以找出其全部解分支,便是分歧問題中最後一個重要課題.在解決此課題的演算法中,我們運用隱函數定理,切線分歧方程,割線預測法,牛頓迭代法以及虛擬弧長延拓法等數值方法來延拓出所有通過分歧點的解分支路徑.
    最後,我們並分別選擇特定的變數作為參數,利用一個非線性代數方程組模型求得存在的分歧點及其解分支路徑圖,使我們更清楚了解該系統的分歧現象與定性上的變化.


    Abstract
    The main purpose of this thesis is to investigate the bifurcation directions and solution branches of multiple bifurcation problems in the nonlinear algebraic equations.
    In this thesis, the implicit function theorem is the main tool to calculate the branch points, such as bifurcation points or turning points. The tangent bifurcation equations are used to solve the bifurcation directions. Because of the multiple solutions occur in the neighborhood of bifurcation point, it is important to figure out the entire solution path in the bifurcation problems. In addition to the implicit function theorem and tangent bifurcation equations, we also quote the numerical method of direction solution branch, secant predictor method, Newton’s interative method, and pseudo–arclength continuation method, to continue all solution branches and pass through bifurcation points.
    To solve the existed bifurcation points and solution paths of models, we also investigate one set of nonlinear algebraic equation models by choosing a specific variable as the parameter. The results help us to understand the bifurcation phenomenon and the variety of qualitative properties of models.

    目錄 第一章 緒 論 1 第二章 分歧理論與延拓法 4 2.1 分歧問題 …………………………………………………… 4 2.2 分歧理論 …………………………………………………… 7 2.3 TBE局部分析………………………………………………… 8 2.4 延拓法 ……………………………………………………… 11 2.4.1 局部延拓法 ……………………………………………11 2.4.2 虛擬弧長延拓法 ………………………………………14 第三章 非線性代數方程組分歧點與解分支 17 3.1 分歧點之求法 ……………………………………………… 17 3.2 選取過分歧點的解分支延拓方向 ………………………… 19 3.2.1 選取解分支延拓方向 ………………………………… 19 3.2.3 求出各解分支延拓方向的初始猜值 …………………… 22 3.3 解分支的延拓 …………………………………………… 22 3.3.1虛擬弧長延拓法之數值計算 ……………………………… 23 3.3.2 割線預測法與牛頓迭代法求解路徑 …………………… 24 3.4 演算法 ……………………………………………………… 25 3.4.1:求出非線性代數方程組之分歧點 ……………………… 25 3.4.2:求出解分支之延拓方向 ………………………………… 27 3.4.3:解分支之延拓法 ………………………………………… 27 第四章 數值實驗 29 4.1 實驗(4.1):方程組(4.1)以 為參數計算結果…………… 32 4.1 實驗(4.2):方程組(4.1)以 為參數計算結果…………… 54 4.1 實驗(4.3):方程組(4.1)以 為參數計算結果…………… 76 第五章 結論 94 參考文獻

    參考文獻

    [1] Allgower,E.L. and Chien,C.S., Continuation and Local Perturbation for Multiple Bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281, 1986.
    [2] Atkinson,K.E., The Numerical Solution of Bifurcation Problems, SIAM J. Numer. Anal., 14(4), pp.584-599, 1977.
    [3] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite Dimensional Approximation of a Bifurcation Problems, Numer. Math., 36, pp.1-25, 1980.
    [4] Brown,K.J., Ibrahim,M.M.A. and Shivaji,R., S-Shaped Bifurcation Curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
    [5] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35, 1977.
    [6] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from Simple Eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
    [7] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
    [8] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series, 1979.
    [9] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [10] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell, 1987.
    [11]J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in Several Variables.Academic press.New York London.1970.
    [12] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
    [13] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
    [14] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384, 1977.
    [15] Keller,H.B. and Langford,W.F., Iterations, Perturbations and Multiplicities for Nonlinear Bifurcation Problems, Arch. Rational Mech. Anal., 48, pp.83-108, l972.
    [16] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel, 1984.
    [17] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983.
    [18] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,1980.
    [19] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley,New York.
    [20] Shivaji,R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., 111, pp.374-387,1985.
    [21] Shivaji,R., Uniqueness Result for a Class of Postione problems, Nonlinear Analysis: Theory, Methods and Application, 7, pp.223-230, 1983.
    [22] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978.
    [23] Wang,S.H., On S-Shaped Bifurcation Curves, Nonlinear Analysis: Theory, Methods and Application, 22, pp.1475-1485, 1994.
    [24]雷晋干,馬應南, 分歧問題的逼近理論與數值方法, pp.65-69, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE