簡易檢索 / 詳目顯示

研究生: 施自強
Tzu-Chiang Shih
論文名稱: 銣原子與鉀原子的磁光阱研究
The study of magneto-optical trap of rubidium and potassium
指導教授: 劉怡維
Yi-Wei Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 31
中文關鍵詞: 磁光阱
外文關鍵詞: MOT, rubidium, potassium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射冷却在近年來迅速地發展,並且成為重要的研究工具。在1975年雷射冷却首次被提出後,磁光阱(magneto-optical trap)、極性梯度冷卻(polarization gradient cooling)、蒸發冷却(evaporative cooling)...等等冷却技術都一一被發展出來。隨著技術的成熟,被捕捉的原子可達到的溫度愈來愈低。目前可達到的溫度在500 pK以下。由於雷射冷却的成熟,玻色愛因斯坦凝聚(Bose-Einstein condensation)得以實現。雷射冷却不只應用在原子分子物理,其應用已擴至凝體物理、電漿物理、量子計算。
    我們建立了一套磁光阱系統,此系統可經由簡單的切換,由捕捉銣原子的系統換成捕捉鉀原子的系統或反之。這套系統主要包括一套自製的鈦藍寶石雷射、一台TUI LASER的半導體雷射(DL100)、一套飽和吸收系統、一組自製的反荷姆霍滋線圈(anti-Helmholtz coil)及Varian的離子幫浦(ion pump)。當鈦藍寶石雷射以Coherent的Verdi(V-6)雷射五瓦幫浦時,在766 nm 及 780 nm 約可出光430 mW,反荷姆霍滋線圈在軸上可提供約20 gauss/cm 的磁場梯度。
    利用這套系統,在雷射緩慢掃頻的情況下,成功地利用87Rb D2躍遷捕捉到銣原子,也成功地利用39K D2躍遷捕捉到鉀原子。除此之外,並利用飽和吸收系統掃出87Rb D2躍遷、39K D2躍遷及39K D1躍遷的飽和吸收光譜及頻率調制光譜(FM spectroscopy)。
    未來的工作主要是再加上另一台鈦藍寶石雷射到此系統中,組成一套可以同時捕捉鉀原子與銣原子的磁光阱系統,以此系統研究超冷鉀原子與銣原子混合物的性質。


    Laser cooling has been developed rapidly in rent years. Then, laser cooling has became an important tool in research. Since laser cooling was proposed in 1975, techniques of cooling such as magneto-optical trap, polarization gradient cooling and evaporative cooling were developed. The trapped atoms can be cooled below 500 pK. Bose-Einstein condensation was achieved because of laser cooling. Besides atomic and molecular physics, laser cooling is applied to condensed matter physics, plasma physics and quantum computing.
    A system of magneto-optical trap has been set up in our laboratory. The system can be switched to as a 39K or 87Rb MOT. The system is mainly composed of a home-made Ti:sapphire laser and a diode laser(DL100). The Ti:sapphire laser has an output power of 430 mW pumped by a 5W DPSS green laser. The gradient of magnetic field of MOT is about 20 g/cm.
    We trapped potassium and rubidium with this system by slowly scanning the frequency of the trapping laser. Saturation spectroscopy and FM spectroscopy of D1 transition of 39K , D2 transition of 39K and D2 transition of 87Rb were observed. Our MOT system could be improved to trap rubidium and potassium simultaneously by adding another Ti: sapphire laser. Ultracold mixture of atomic rubidium and potassium will be studied with such an improved system.

    目錄 第一章 雷射冷却與目的...... ............1 §1-1 目的.........................1 §1-2都卜勒冷却............ ..........2 §1-3磁光阱............. ...........2 §1-3.1 二能階原子.....................2 §1-3.2 真實原子......................3 §1-4銣原子能階............... .......5 §1-4.1 銣原子簡介......... ...........5 §1-4.2 銣原子D2躍遷的磁光阱.............. .5 §1-5鉀原子能階....... ...............6 §1-5.1 鉀原子簡介.......... ..........6 §1-5.2 鉀原子D2躍遷的磁光阱......... ......7 §1-5.3 鉀原子D1躍遷的磁光阱........ .......8 §1-6雷射頻率整理........... ..........9 第二章 實驗裝置.....................10 §2-1 雷射光源..................... .10 §2-1.1 半導體雷射.............. ......10 §2-1.1.1 半導體雷射簡介......... ...... .10 §2-1.1.2 銣原子磁光阱幫浦雷射光路............10 §2-1.2 鈦藍寶石雷射.......... .........11 §2-1.3 聲光調製器........... .........12 §2-1.3.1 聲光調製器的作用........ ........12 §2-1.3.2 Double pass.......... ...... ..13 §2-2 光譜................... .....15 §2-2.1 飽和光譜............. ........15 §2-2.2 頻率調制光譜(FM spectroscopy)...........16 §2-3 磁光阱.................. .....18 §2-3.1 配置....................... 18 §2-3.2 真空系統.............. .......20 §2-3.3 磁場................... ....20 第三章 實驗結果.....................21 §3-1 光譜.................. ......21 §3-1.1 87Rb D2躍遷的飽和光譜......... .....21 §3-1.2 39K D2躍遷的飽和光譜...............22 §3-1.3 39K D1躍遷的飽和光譜...............24 §3-2 磁光阱................. ......25 §3-2.1 銣原子D2磁光阱............. .....25 §3-2.2 鉀原子D2磁光阱.............. ....26 §3-2.3 鉀原子D1磁光阱.............. ....28 第四章 討論.......................29 參考文獻.........................30 圖目錄 圖一 原子受激後自發輻射動量改變......... 2 圖二 黎曼分裂.................. 3 圖三 鹼金族的D2躍遷............... 4 圖四 87Rb的超精細結構.............. 5 圖五 87Rb磁光阱的陷阱雷射和幫浦雷射頻率選擇... 6 圖六 39K的超精細結構.............. 7 圖七 39K D2躍遷的雷射頻率選擇.......... 8 圖八 39K D1躍遷和磁光阱的雷射頻率選擇...... 9 圖九 銣原子磁光阱幫浦雷射光路..........11 圖十 鈦藍寶石雷射................12 圖十一 聲光調制器的作用..............13 圖十二 聲光調制器Double pass........... 14 圖十三 使鉀磁光阱兩道雷射重疊的光路........14 圖十四 飽和光譜光路................16 圖十五 頻率調制光譜光路..............17 圖十六 磁光阱配置.................19 圖十七 磁場線圈..................20 圖十八 87Rb D2躍遷飽和光譜........... .21 圖十九 87Rb D2躍遷頻率調制光譜.......... 22 圖二十 39K D2躍遷的飽和光譜......... .. 23 圖二十一 39K D2躍遷的頻率調制光譜..........23 圖二十二 39K D1躍遷的飽和光譜............24 圖二十三 39K D1躍遷的頻率調制光譜..........24 圖二十四 87Rb D2躍遷磁光阱............. 25 圖二十五 87Rb D2躍遷磁光阱的3D立體圖........ 26 圖二十六 39K D2躍遷磁光阱..............27 圖二十七 39K D2躍遷磁光阱的3D立體圖.........27 圖二十八 39K D1躍遷螢光...............28 表目錄 表一 所用的雷射頻率............ ...9

    [1] http://nobelprize.org/physics/laureates/1997/press.html
    [2] http://nobelprize.org/physics/laureates/2001/press.html
    [3] T. Hänsch and A. Schalow, Opt. Commun. 13, 68 (1975)
    [4] D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975)
    [5] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin Phys. Rev. Lett. 55, 48 (1985)
    [6] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard Phys. Rev. Lett. 59, 2631 (1987)
    [7] M. H. Anderson; J. R. Ensher; M. R. Matthews; C. E. Wieman; E. A. Cornell
    Science, 269, 198. (1995)
    [8] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle Phys. Rev. Lett. 75, 3969 (1995)
    [9] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet Phys. Rev. Lett. 80, 4402 (1998)
    [10] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm Science 302, 2101 (2003)
    [11] Markus Greiner, Cindy A. Regal and Deborah S. Jin Nature 426, 537 (2003)
    [12] J.T. Bahns, P.L. Gould,and W.C. Stwalley, Adv. At. Mol. Opt. Phys. 42, 171 (2000)
    [13] J.L. Bohn, Phys. Rev A 63, 052714 (2001)
    [14] L. Santos et al. Phys. Rev. Lett 85, 1791 (2000)
    [15] H. Wang and W.C. Stwalley, J. Chem. Phys. 108, 5767 (1998)
    [16] D. DeMille. Phys. Rev. Lett. 88, 067901 (2002)
    [17] M. G. Kozlov and L. N. Labzowsky, J. Phys. B 28, 1933 (1995)
    [18] Phillips, WD, Gould, PL & Lett, PD, Science 239, 877 (1988).
    [19] E. Arimondo, M. Inguscio, and P. Violino Rev. Mod. Phys. 49, 31 (1977)
    [20] "Simplified System for Creating a Bose-Einstein Condensate" by H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell
    [21] C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, and M. Mazzoni Phys. Rev. Lett. 84, 2814 (2000)
    [22] " Magneto-optical trapping of potassium isotopes" by Robert Sylvester Williamson III
    [23] C. Fort, A. Bambini, L. Cacciapuoti, F.S. Cataliotti, M. Prevedelli, G.M. Tino, M. Inguscio Eur. Phys. J. D 3, 113 (1998)
    [24] R. S. Williamson III, T. Walker JOSA B, Vol. 12 Issue 8 Page 1393 (1995)
    [25] H. Wang, P. L. Gould, and W. C. Stwalley Phys. Rev. A 53, R1216 (1996)
    [26] K. Lindquist, M. Stephens, and C. Wieman Phys. Rev. A 46, 4082 (1992)
    [27] C. Monroe, W. Swann, H. Robinson, and C. Wieman Phys. Rev. Lett. 65, 1571 (1990)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE