研究生: |
郭俊賢 Kuo, Chun-Hsien |
---|---|
論文名稱: |
鈣離子阱系統的構建及43Ca+離子的量子態操控實驗研究 Construction of a Calcium Ion Trap System and Experimental Study of Quantum State Manipulation of 43Ca+ Ions |
指導教授: |
童世光
Tung, Shih-Kuang |
口試委員: |
王立邦
Wang, Li-Bang 劉怡維 Liu, Yi-Wei 張銘顯 Chang, Ming-Shien 林俊達 Lin, Guin-Dar |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 離子阱 、鈣離子同位素 、量子態操控 |
外文關鍵詞: | trapped ion, calcium ion isotope, quantum state manipulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子阱是量子資訊處理的理想平台,具有長相干時間和極高保真度的量子邏輯閘。作為這個領域的初學者,我們從建造一個離子阱系統的挑戰開始。雖然與中性原子物理實驗有一些相似之處,兩者都涉及原子,並且利用雷射和微波系統進行捕捉與操控,但也存在許多顯著的不同。我們面臨著許多未知的領域需要探索。對知識的追求驅使我們不斷挑戰,學習該領域的先驅研究,並確立合適的研究主題,以促進該領域的進步。
本論文詳細探討了離子阱構建的理論與實驗層面,涵蓋了離子阱組件的設計、雷射系統以及電壓源的開發過程。論文對離子通過光電離的方式進行捕捉的過程進行了深入解釋,並討論了如何通過離子的光譜來了解離子阱的特性。此論文還闡述了利用光電離雷射選擇性裝載鈣離子同位素的方法,並通過參數激發移除不需要的離子,最終開發出了一套有效裝載極低自然含量同位素的程序。此外,還有研究如何使用微波與拉曼雷射對43Ca+進行量子態操控,並強調了目前取得的成就及所面臨的挑戰,並提出了未來克服這些障礙的策略。
Trapped ions are an excellent platform for quantum information processing, offering long coherence times and exceptionally high-fidelity quantum logic gates. As beginners in this field, our journey began with the challenge of building an ion trap system. While there are similarities to neutral atomic physics experiments—both involve working with atoms and using laser and microwave systems for trapping and manipulation—there are also many distinct differences. We face many unknowns to explore. Our curiosity drives us to take challenges, learn from the pioneering research in the field, and identify suitable research topics that can contribute to the advancement of the field.
This thesis presents a detailed exploration of both the theoretical and experimental aspects of constructing an ion trap. It covers the design and development of the ion trap assembly, the laser system, and voltage sources. The process of ion loading via photoionization is thoroughly explained, with a discussion on how the ion spectrum can provide insights into the characteristics of the trap. The thesis also outlines methods for selectively loading calcium ion isotopes using photoionization lasers and removing unwanted ions through parametric excitation. This work concludes in the creation of a procedure for efficiently loading isotopes with extremely low natural abundance. Furthermore, it investigates the quantum state manipulation of 43Ca+ using microwave and Raman lasers, highlighting both the current accomplishments and the challenges encountered, while suggesting strategies for overcoming these obstacles in the future.
[1] F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut, and P. O. Schmidt. Precision isotope shift measurements in calcium ions using quantum logic detection schemes. Phys. Rev. Lett., 115:053003, Jul 2015.
[2] P. Imgram, K. K¨onig, J. Kr¨amer, T. Ratajczyk, R. A. M¨uller, A. Surzhykov, and W. N¨ortersh¨auser. Collinear laser spectroscopy at ion-trap accuracy: Transition frequencies and isotope shifts in the 6𝑠 2𝑆1/2 → 6𝑝 2𝑃1/2,3/2 transitions in ba+. Phys. Rev. A, 99:012511, Jan 2019.
[3] I. Counts, J. Hur, D. P. L. Aude Craik, H. Jeon, C. Leung, J. C. Berengut, A. Geddes, A. Kawasaki, W. Jhe, and V. Vuleti´c. Evidence for nonlinear isotope shift in yb+ search for new boson. Phys. Rev. Lett., 125:123002, Sep 2020.
[4] C. A. Holliman, M. Fan, A. Contractor, S. M. Brewer, and A. M. Jayich. Radium ion optical clock. Phys. Rev. Lett., 128:033202, Jan 2022.
[5] D. P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11):771–783, 2000.
[6] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett., 113:220501, Nov 2014.
[7] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 117:060504, Aug 2016.
[8] M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. H¨ansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent. Absolute frequency measurement of the 40Ca+ 4𝑠 2𝑠1/2 − 3𝑑 2𝑑5/2 clock transition. Phys. Rev. Lett., 102:023002, Jan 2009.
[9] P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, and D. N. Stacey. Measurement of the lifetime of the 3𝑑2 𝐷5/2 state in 40ca+. Phys. Rev. A, 62:032503, Aug 2000.
[10] D. J. Wineland, R. E. Drullinger, and F. L. Walls. Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett., 40:1639–1642, Jun 1978.
[11] W. Paul. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys., 62:531–540, Jul 1990.
[12] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J Res Natl Inst Stand Technol, 103(3):259–328, 1998.
[13] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75:281–324, Mar 2003.
[14] S. Woodrow. Linear paul trap design for high-fidelity, scalable quantum information processing. M.Sc. Thesis, 2015.
[15] T. G. Ballance, J. F. Goodwin, B. Nichol, L. J. Stephenson, C. J. Ballance, and D. M. Lucas. A short response time atomic source for trapped ion experiments. Review of Scientific Instruments, 89(5):053102, May 2018.
[16] K. Odaka and S. Ueda. Dependence of outgassing rate on surface oxide layer thickness in type 304 stainless steel before and after surface oxidation in air. Vacuum, 47:689–692, 1996.
[17] Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland. Heating of trapped ions from the quantum ground state. Phys. Rev. A, 61:063418, May 2000.
[18] W. W. Macalpine and R. O. Schildknecht. Coaxial resonators with helical inner conductor. Proceedings of the IRE, 47(12):2099–2105, 1959.
[19] J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger. On the application of radio frequency voltages to ion traps via helical resonators. Applied Physics B, 107(4):921–934, Jun 2012.
[20] G. Grandi, M.K. Kazimierczuk, A. Massarini, and U. Reggiani. Stray capacitances of single-layer solenoid air-core inductors. IEEE Transactions on Industry Applications, 35(5):1162–1168, 1999.
[21] W. W. Macalpine and R. O. Schildknecht. Coaxial resonators with helical inner conductor. Proceedings of the IRE, 47(12):2099–2105, 1959.
[22] L. M. Bennie, P. T. Starkey, M. Jasperse, C. J. Billington, R. P. Anderson, and L. D. Turner. A versatile high resolution objective for imaging quantum gases. Opt. Express, 21(7):9011–9016, Apr 2013.
[23] J. Kim, K. Kim, D. Lee, Y. Shin, S. Kang, J. Kim, Y. Choi, K. An, and M. Lee. Locking multi-laser frequencies to a precision wavelength meter: Application to cold atoms. Sensors, 21(18), 2021.
[24] N. Kjaergaard, L. Hornekaer, A. M. Thommesen, Z. Videsen, and M. Drewsen. Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Applied Physics B, 71:207–210, 2000.
[25] S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, and W. Hogervorst. Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments. Applied Physics B, 73:861–863, 2001.
[26] D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane. Isotope-selective photoionization for calcium ion trapping. Phys. Rev. A, 69:012711, Jan 2004.
[27] A. V. Steele, L. R. Churchill, P. F. Griffin, and M. S. Chapman. Photoionization and photoelectric loading of barium ion traps. Phys. Rev. A, 75:053404, May 2007.
[28] M. Brownnutt, V. Letchumanan, G. Wilpers, R. C. Thompson, P. Gill, and A. G. Sinclair. Controlled photoionization loading of 88Sr+ for precision ion-trap experiments. Applied Physics B, 87:411–415, 2007.
[29] G. Leschhorn, T. Hasegawa, and T. Schaetz. Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition. Applied Physics B, 108:159–165, 2012.
[30] T. B. Coplen, J. K. B¨ohlke, P. De Bi`evre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, K. Peiser, H. S.and Revesz, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke, and Y. K. Xiao. Isotope-abundance variations of selected elements (iupac technical report). Pure and Applied Chemistry, 74:1987–2017, 2002.
[31] R. C. Wilhoit, J. Chao, and K. R. Hall. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases. Journal of Physical and Chemical Reference Data, 14(1):1–175, Jan 1985.
[32] J. Roßnagel, K. N. Tolazzi, F. Schmidt-Kaler, and K. Singer. Fast thermometry for trapped ions using dark resonances. New Journal of Physics, 17:045004, 2015.
[33] K. Jung, Y. Yamamoto, and S. Hasegawa. Excess micromotion compensation of trapped ions in a linear paul trap for trace isotope analysis. Journal of Nuclear Science and Technology, 54(11):1261–1266, 2017.
[34] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland. Minimization of ion micromotion in a Paul trap. Journal of Applied Physics, 83(10):5025–5033, May 1998.
[35] H. C. N¨agerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, and R. Blatt. Coherent excitation of normal modes in a string of ca+ ions. Opt. Express, 3(2):89–96, Jul 1998.
[36] T. Hasegawa and T. Shimizu. Removal of irrelevant isotope ions in the presence of laser cooling in a rf trap. Applied Physics B, 70:867–871, Jun 2000.
[37] X. Zhao, V. L. Ryjkov, and H. A. Schuessler. Parametric excitations of trapped ions in a linear rf ion trap. Phys. Rev. A, 66:063414, Dec 2002.
[38] J. Schmidt, D. H¨onig, P. Weckesser, F. Thielemann, T. Schaetz, and L. Karpa. Mass-selective removal of ions from paul traps using parametric excitation. Applied Physics B, 126:176, Oct 2020.
[39] C. Kuo, Y. Hsiao, C. Jhang, Y. Chen, and S. Tung. Preparing pure 43Ca+ samples in an ion trap with photoionization and parametric excitations. Sci Rep, 14:18524, Aug 2024.
[40] T. A. Savard, K. M. O’Hara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A, 56:R1095–R1098, Aug 1997.
[41] A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen. Isotope shifts of the 4𝑠2 1𝑠0 → 4𝑠5𝑝 1 𝑝1 transition and hyperfine splitting of the 4𝑠5𝑝 1 𝑝1 state in calcium. Phys. Rev. A, 69:042502, Apr 2004.
[42] E. L. Hahn. Spin echoes. Phys. Rev., 80:580–594, Nov 1950.
[43] M. Riebe, H. H¨affner, C. F. Roos, W. H¨ansel, J. Benhelm, G. P. T. Lancaster, T. W. K¨orber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt. Deterministic quantum teleportation with atoms. Nature, 429:734–737, Jun 2004.
[44] M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland. Deterministic quantum teleportation of atomic qubits. Nature, 429:737–739, Jun 2004.
[45] C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett., 85:5547–5550, Dec 2000.
[46] R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, and C. F. Roos. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A, 93:053401, May 2016.
[47] L. Feng, W. L. Tan, A. De, A. Menon, A. Chu, G. Pagano, and C. Monroe. Efficient ground-state cooling of large trapped-ion chains with an electromagnetically-induced-transparency tripod scheme. Phys. Rev. Lett., 125:053001, Jul 2020.
[48] M. Qiao, Y. Wang, Z. Cai, B. Du, P. Wang, C. Luan, W. Chen, H. Noh, and K. Kim. Double-electromagnetically-induced-transparency ground-state cooling of stationary two-dimensional ion crystals. Phys. Rev. Lett., 126:023604, Jan 2021.