簡易檢索 / 詳目顯示

研究生: 羅仕翰
Lo, Shih-Han
論文名稱: 設計及合成含1,4-環氮硼結構之熱活化延遲螢光材料及其於OLEDs之應用
Design and Synthesis of 1,4-Azaborine derivatives as Blue and Green TADF Emitters
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 周鶴修
Chou, Ho-Hsiu
陳秋炳
Cheng, Cheu Pyeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 168
中文關鍵詞: 熱活化延遲螢光
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設計及合成含環氮硼結構並與不同的電子予體合成一系列衍生物CZAZB、tCZAZB、tmCZAZB、SpiroAZB、DMACAZB、PXZAZB,此系列的化合物的排序依照電子予體的電子給予能力及立體效應排序,其光色從深藍光至綠光,在甲苯溶液中螢光光譜波峰由442至513 nm,最低單重激發態及最低三重激發態的能差ΔEST分別為0.37、0.26、0.22、0.21、0.11、0.08 eV,藉由提升電子予體之電子給予能力及立體效應來減低ΔEST來探討與有無熱活化延遲螢光(Thermally activated delayed fluorescence, TADF)。所有的材料皆有良好的熱穩定性質,熱裂解溫度皆在400 oC以上,並且進一步的將此系列衍生物(材料)應用於有機發光二極體的元件上面來探討是否有TADF材料的效率標準,我們以NPB (20)/TAPC (30)/mCP:10wt%Dopant (30)/PPT (10)/TmPyPB (70)(unit: nm)做為元件最佳化的結構將所有材料製作成元件比較使用更強電子予體的材料DMACAZB,其元件電激發光光譜波峰位於470 nm、CIE為(0.14, 0.19),EQE達到21.7 %具有良好的效率,最大亮度可達10730 cd/m2,此材料經暫態螢光光譜儀確認為熱活化延遲螢光(TADF)材料其延遲螢光的生命期為108.2 us,材料PXZAZB由於phenoxazine極強的電子給予能力造成了EL紅位移至512 nm,但是也將ΔEST最小化至0.08 ev,在元件的應用之中達到了近乎延遲螢光EQE上限的30.3 %,並且無套用增加出光率的結構,CIE位於(0.26, 0.57),而進一步的由暫態激發螢光光譜確定其生命期為25.2 us屬於延遲螢光材料。


    Thermally activated delayed-fluorescence (TADF) are important in OLED display and lighting, particularly on high performance deep blue dopants in fluorescent OLED are still challenging. In this contest, we design a new series of 1,4-azaborine derivatives such as CZAZB, tCZAZB, tmCZAZB, SpiroAZB, DMACAZB and PXZAZB were synthesized. Further, we reduced the triplet and singlet energy gap between donor and acceptor such as ΔEST are 0.37, 0.26, 0.22, 0.21, 0.11, 0.08 eV respectively for the above compounds. All of the material has high Td above 400 oC showing good thermal stability. Furthermore, among the six 1,4-azaborine materials DMACAZB and PXZAZB shows better external quantum efficiencies for the deep blue and green fluorescence emitter. We applied all of the materials into OLEDs, following the optimized device structure: NPB (20)/TAPC (30)/mCP:10wt%Dopant (30)/PPT (10)/TmPyPB (70) (unit: nm)

    DMACAZB achieved high EQE in 21.7 %, and high luminance of 10730 cd/m2, and showed blue CIE (0.14, 0.19), further we confirmed that TADF property of this compound by Transient Pl instrument, τdelayed was 108.2 us.

    PXZAZB showed most red shift to 512 nm in EL spectra, due to the strong electron donating by phenoxazine, but also minimized the ΔEST into 0.08 ev, also showing the extremely high EQE in 30.3 %, which closed to the maximum EQE of TADF material without considered light out property, and CIE at (0.26, 0.57), we confirmed the TADF component with Transient PL, τdelayed decreased to 25.5 us, because the short delayed time the EQE increase.

    摘要 I Abstract III 圖目錄 VII 表目錄 X 第一章 緒論 2 第一節 有機電致發光發展歷史 2 第二節 有機發光二極體之基本結構 4 第三節 螢光與磷光之放光機制 5 第四節 OLED元件的發光原理 8 第五節 主體材料與客體材料間的能量傳遞 11 第六節 熱活化延遲螢光(Thermally Activated Delayed Fluorescence)材料的原理及分子設計和發展 16 參考文獻 22 第二章 設計與合成含1,4-環氮硼結構之材料及其物理性質 26 前言與動機 26 第一節 熱活化延遲螢光客體材料的合成與鑑定 35 第二節 含1,4環氮硼結構之熱活化延遲螢光材料的理論計算探討和單晶繞射結構分析 40 第三節 吸收光譜與螢光光譜及材料之最高佔有軌域(HOMO)能階之測定 45 第四節 最低單重、三重激發態能階的量測及螢光量子效率 52 第五節 暫態延遲光激發光光譜測量延遲螢光 57 第六節 材料的熱穩定性質的測量 59 參考文獻 62 第三章 有機發光二極體的應用 65 第一節 元件結構的最佳化 65 第二節 深藍光客體材料的元件效果 89 第三節 綠色熱活化延遲螢光客體材料之元件表現 96 參考文獻 101 實驗部分 102 材料的合成步驟及光譜資料 102 附錄一 藥品、儀器、元件製作 119 附錄二 核磁共振光譜資料 125 附錄三 X-ray 單晶繞射結構分析 156

    第一章
    [1] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    [2] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    [3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D.
    Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
    [4] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, M. E.Thompson, IEEE Trans. Electron Device. 1997, 44, 11888.
    [5] 林致鈞,國立清華大學化學系博士論文,中華民國一百零五年七月
    [6] 吳奕靚,國立清華大學化學系碩士論文,中華民國一百零四年七月
    [7] 審譯:林敬二,林宗義,儀器分析第四版,1994,上冊,174。
    [8] N. J. Turro, Modern Molecular Photochemistry, University Science Book, CA, 1991.
    [9] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001, 90, 5048.
    [10] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 2082.
    [11] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S.R. Forrest, Nature 1998, 395, 151.
    [12] 陳金鑫, 黃孝文, OLED 夢幻顯示器.OLED 材料與元件, 2009, 240.
    [13] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Physical Review B. 1999, 60, 14422.
    [14] V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, Phys. Rev. B. 1998, 58, 3730.
    [15] M. H. Lu, J. C. Sturm, J. Appl. Phys. 2002, 91, 595.
    [16] P. Y. Chou, H. H. Chou, Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y. Yen, I. C. Chen, C.-H. Cheng, Chem. Commun., 2014, 50, 6869.
    [17] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [18] C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [19] a) D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 74, 442; b) M. A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, 10967.
    [20] T. Förster, Disc. Faraday Soc. 1959, 27, 7.
    [21] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B. 1999, 60, 20.
    [22] Q. Peng, E. T. Kang, K. G. Neoh, D. Xiao, D. Zou, J. Mater. Chem.,
    2006, 16, 376
    [23] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C. Adachi, Appl. Phys. Lett. 2011, 98, 083302.
    [24] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234
    [25] A. Chihaya, Jpn. J. Appl. Phys. 2014, 53, 060101.
    [26] M.Y. Wong , E. Z. Colman, Adv. Mater. 2017, 1605444.
    [27] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931.
    [28] a) J. Lee, K. Shizu, H. Tanaka, H. Nakanotani, T. Yasuda, H. Kaji, C. Adachi, J. Mater. Chem. C. 2015, 3, 2175; b) I. S. Park, S. Y. Lee, C. Adachi, T. Yasuda, Adv. Funct. Mater. 2016, 26, 1813; c) X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu, D. Chen, Y. Cao, S.-J. Su, Chem. Sci. 2016, 7, 4264.
    [29] K. Shizu, Y. Sakai, H. Tanaka, S. Hirata, C. Adachi, H. Kaji, ITE Trans. Media Technol. Appl. 2015, 3, 108.
    [30] M. Moral, L. Muccioli, W. J. Son, Y. Olivier, J. C. Sancho-García, J. Chem. Theory Comput. 2015, 11, 168.
    [31] M. A. El-Sayed, Acc. Chem. Res. 1968, 1, 8.
    [32] S. Lobsiger, M. Etinski, S. Blaser, H.-M. Frey, C. Marian, S. Leutwyler, J. Chem. Phys. 2015, 143, 234301.
    [33] J. C. Deaton, S. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499.
    [34] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134, 14706.
    [35] S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabaraa, C. Adachi, J. Mater. Chem. C, 2014, 2, 421.
    [36] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics, 2014, 8, 326.
    [37] H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.
    [38] T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater. 2016, 28, 6976.
    [39] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang, C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin, C.-H. Cheng, J. Am. Chem. Soc. 2016, 138, 628.
    [40] P. Rajamalli, N. Senthilkumar, P. Gandeepan, C. C. R. Wu, H. W. Lin, C.-H. Cheng, ACS Appl. Mater. Interfaces. 2016, 8, 27026.

    第二章
    [1] H. Sasabe, J. Kido, Chem. Mater. 2011, 23, 621.
    [2] a) M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151; b) K.-Y. Lu, H.-H. Chou, C.-H. Hsieh, Y.-H. O. Yang, H.-R. Tsai, H.-Y. Tsai, L.-C. Hsu, C.-Y. Chen, I.-C. Chen, C.-H. Cheng, Adv. Mater. 2011, 23, 4933.
    [3] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [4] a) Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931; b) M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444.
    [5] K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, H. Kaji, Angew. Chem. Int. Ed. 2015, 54, 15231.
    [6] a) Y. Kitamoto, T. Namikawa, T. Suzuki, Y. Miyata, H. Kita, T. Sato, S. Oi, Organic Electronics. 2016, 34, 208; b) Y. Kitamoto, T. Namikawa, T. Suzuki, Y. Miyata, H. Kita, T. Sato, S. Oi, Tetrahedron Lett. 2016, 57, 4914.
    [7] Y. H. Lee, S. Park, J. Oh, J. W. Shin, J. Jung, ACS Appl. Mater. Interfaces. 2017, 9, 24035.
    [8] M. Numata, T. Yasuda,C. Adachi, Chem.Commun. 2015, 51, 9443.
    [9] Y. Kitamoto, T. Namikawa, D. Ikemizu, Y. Miyata, T. Suzuki, H. Kita, T. Sato ,S. Oi, J. Mater. Chem. C, 2015, 3, 9122.
    [10] T. Agou, J. Kobayashi, T. Kawashima, Chem. Commun. 2007, 3204.
    [11] a) I. S. Park, M. Numata, C. Adachi, T. Yasuda, Bull. Chem. Soc. Jpn. 2016, 89, 375; b) I. S. Park, J. Lee, T. Yasuda, J. Mater. Chem. C, 2016, 4, 7911.
    [12] I. S. Park, H. Komiyama. T. Yasuda, Chem. Sci. 2016, 8, 953.
    [13] L. S. Cui, H. Nomura, Y. Geng,J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571.
    [14] X. Wang, C. Wang, X. Wang, Y. Wang, Organic Preparations and Procedures International 2016,32:4, 379.
    [15] T. Agou, T. Kojima, J. Kobayashi, T. Kawashima, Org. Lett. 2009, 11, 3534.
    [16] S. N. Bagriantsev, K. H. Ang, A. G. Godoy, K. A. Clark, M. R. Arkin, A. R. Renslo, D. L. Minor, Jr. ACS Chem. Biol. 2013, 8, 1841.
    [17] C. C. Lai, M. J. Huang, H.H. Chou, C. Y Liao, P. Rajamalli, C.-H. Cheng, Adv. Funct. Mater. 2015, 25, 5548.
    [18] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics, 2014, 8, 326.
    [19] S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabaraa, C. Adachi, J. Mater. Chem. C, 2014, 2, 421.

    第三章
    [1]P. Rajamalli, N. Senthilkumar, P. Gandeepan, C. C. R. Wu, H. W. Lin, and C. H. Cheng, ACS Appl. Mater. Interfaces. 2016, 8, 27026.

    QR CODE