簡易檢索 / 詳目顯示

研究生: 羅士傑
Lo, Shih-Chieh
論文名稱: 生成式AI時代對自費型牙醫診所經營管理之影響-以嶺先牙醫集團為例
The Impact of the Generative AI Era on the Management of Self-Pay Dental Clinics - A Case Study of Leading Dental Care Clinic Group
指導教授: 林哲群
Lin, Che-Chun
口試委員: 楊屯山
Yang, Jerry T.
蔡錦堂
Tsay, Jing-Tang
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 高階經營管理雙聯碩士學位學程
NTHU-UTA Dual EMBA Degree Program
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 60
中文關鍵詞: 生成式AI智慧醫療服務虛擬客服牙科管理牙科零售化醫療大數據
外文關鍵詞: Generative AI, Intelligent Healthcare Services, Virtual Customer Support, Dental Practice Management, Dental Retailization, Medical Big Data
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討生成式AI在自費型牙醫診所經營管理中的應用及其影響。文獻回顧部分探討牙醫診所經營管理的傳統理論,以及生成式AI在管理和醫療領域的應用情況。透過問卷調查以及診所顧客大數據資料分析等方法,分析技術革新對經營管理、人力資源與訓練、顧客關係與市場行銷、創新服務和商業模式等面向的影響,並進行問卷分析和案例研究。本研究觀察到牙科行業面臨著多方面的挑戰,包括醫師個人層面、單人診所層面以及小型連鎖層面上的管理問題。生成式AI在智慧醫療服務和虛擬客服方面的應用,對解決這些挑戰帶來了實質性成果,特別是在解決台灣出生率降低和醫療人力不足的雙重挑戰方面,生成式AI虛擬客服的應用可以緩解人力資源不足的問題。這種生成式AI帶來的創新服務和商業模式不僅影響了嶺先牙醫體系,還對整個牙科行業的未來競爭力產生深遠影響,具體而言,生成式AI對診所的開源、節流、降本和創收均有顯著的貢獻。生成式AI能夠通過更精準的客戶定位和個性化的行銷策略來增加客源,並且能夠簡化工作流程,減少不必要的資源浪費,特別是在人力資源管理和運營效率提升方面。通過內部系統的數據整合和智能管理,有效降低營運成本,並改善了管理流程。此外,AI系統的引入不僅提升了診所的營運效率,也提升了客戶服務體驗,增加了客戶的認知價值。故其所帶來的智慧醫療解決方案將促使更多同業效仿,進一步提高整個牙科行業的效能和服務水平,同時實現行業可持續發展。


    This study aims to explore the application and impact of generative AI in the management of private dental clinics. The literature review section discusses traditional theories of dental clinic management, as well as the application of generative AI in management and healthcare domains. Through methods such as questionnaire surveys and analysis of big data from clinic customers, the study analyzes the impact of technological innovation on aspects such as operational management, human resources and training, customer relationships and marketing, innovative services, and business models. The study also conducts questionnaire analysis and case studies. The research observes various challenges facing the dental industry, including management issues at the individual physician level, single-clinic level, and small-chain level. The application of generative AI in smart healthcare services and virtual customer service has yielded substantial results in addressing these challenges. Specifically, in addressing the dual challenges of declining birth rates and insufficient medical manpower in Taiwan, the application of generative AI virtual customer service can alleviate the problem of manpower shortage. The innovative services and business models brought about by generative AI not only impact the Leading Dental System but also have a profound effect on the future competitiveness of the entire dental industry. Specifically, generative AI significantly contributes to revenue generation, cost savings, and profit enhancement for dental clinics. By enabling more precise customer targeting and personalized marketing strategies, generative AI helps attract more clients while simplifying workflows and reducing unnecessary resource waste. This is particularly evident in the management of human resources and the improvement of operational efficiency. Through the integration of internal systems and intelligent management, operational costs are effectively lowered, and management processes are improved. Furthermore, the introduction of AI systems enhances clinic operational efficiency and improves customer service experience, thereby increasing customer perceived value. Consequently, the intelligent healthcare solutions brought about by generative AI will encourage more industry peers to emulate, further improving the efficiency and service levels of the entire dental industry, while achieving sustainable development of the industry.

    1.緒論............1 1.1 研究動機......1 1.2 研究標的背景...7 1.3 研究問題.....10 1.4 論文結構.....10 2.文獻回顧.......11 2.1 數位轉型與人工智慧............11 2.2 牙醫診所經營管理的傳統理論.....12 2.3 生成式AI在管理上的應用........13 2.4 AI在醫療領域的應用............15 3.研究方法.......18 3.1 研究設計.....18 3.2 數據收集方法..20 3.3 數據分析方法..20 4.實證結果.......21 4.1 大數據分析智能化平台對經營管理的影響.....21 4.2 人力資源與訓練...............33 4.3 顧客關係與市場營銷...........34 4.4 牙科領域生成式AI創新服務......37 4.5 創新服務商業模式之消費者驗證...39 4.6 案例研究.....49 5.結論與建議.....57 參考文獻.........59

    一、中文部分
    王岫晨 (2023年7月25日),用AI解決智慧醫療痛點 從那e間診所談起,CTIMES雜誌,2024年4月24日,取自:http://disq.us/t/4huy6lv
    范秉航 (2021年8月30日),【2021年台灣早期投資專題-總覽篇】逆風高飛?新創投資熱度未減、挑戰仍在!,FINDIT 台灣新創募資第一站,2024年4月24日,取自:http://findit.org.tw/researchPageV2.aspx?pageId=1799
    曾明清 (2022),元宇宙時代~智慧牙醫的四堂半課:從數位轉型到智慧學習,有故事股份有限公司。
    黃齊元、東海大學智慧轉型中心作者群 (2020),從AI到AI+:臺灣零售、醫療、基礎建設、金融、製造、農牧、運動產業第一線的數位轉型,真文化。
    詹文男、李震華、周維忠、王義智、數位轉型研究團隊 (2020),數位轉型力,商周出版。
    二、英文部分
    Accenture (2020). Artificial Intelligence: Healthcare’s new nervous system. Accenture. Retrieved from https://www.accenture.com/au-en/insights/health/artificial-intelligence-healthcare
    Agarwal, R., Gao, G., DesRoches, C., & Jha, A. K. (2010). Research Commentary—The Digital Transformation of Healthcare: Current Status and the Road Ahead. Information Systems Research, 21(4), 796–809.
    Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., … Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606–659.
    Constantinides, P., Henfridsson, O., & Parker, G. G. (2018). Introduction—Platforms and Infrastructures in the Digital Age. Information Systems Research, 29(2), 381–400.
    Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. mit Press.
    Ekbia, H. R. (2009). Digital artifacts as quasi-objects: Qualification, mediation, and materiality. Journal of the American Society for Information Science and Technology, 60(12), 2554–2566.
    Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1), 52–61.
    Holmström, J. (2022). From AI to digital transformation: The AI readiness framework. Business Horizons, 65(3), 329–339.
    Lyytinen, K., Yoo, Y., & Boland Jr., R. J. (2016). Digital product innovation within four classes of innovation networks. Information Systems Journal, 26(1), 47–75.
    Tiwana, A., Konsynski, B., & Bush, A. A. (2010). Research Commentary—Platform Evolution: Coevolution of Platform Architecture, Governance, and Environmental Dynamics. Information Systems Research, 21(4), 675–687.
    Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet, 15(9), Article 9.

    QR CODE