研究生: |
劉依玟 Liu, I-Wen |
---|---|
論文名稱: |
內插式QR分解演算法與其在晶格簡化MIMO-OFDM系統之應用 Interpolation-based QR Decomposition Algorithm and Its Application to Lattice Reduction-aided MIMO-OFDM System |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
翁詠祿
Ueng, Yeong-Luh 蔡佩芸 Tsai, Pei-Yun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 內插式QR分解 、正交分頻多工系統 、晶格演算法 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先進的MIMO-OFDM系統中,速度需求巨幅攀升,以往tone-by-tone的QR分解處理方式,在QR分解部分耗費相當多的計算,此高運算複雜度特性造成了實作上的瓶頸。為了解決上述傳統作法之高運算量問題,內插式QR分解演算法(interpolation-based QR decomposition, IQRD)已證實能改良傳統作法,降低大量複雜度。因此,此篇論文主要研究內插式QR分解演算法並提出修正的方法已改良運算的複雜度。在利用Q和R矩陣進行解碼的演算法中,由於矩陣R是一上三角矩陣,矩陣解碼順序為由下而上,而第一個進行解碼的信號(symbol)會迭代回方程式中進行後面的信號解碼,因此越早進行解碼的信號,其準確性影響錯誤延遲的情形,對解碼正確率的影響亦越大。在提出的修正方法中,利用上述特性,在進行內插程序時,將相對應於第一個進行解碼信號的最後一列R矩陣之數值使用足夠的pilot數以減少內插錯誤,而其餘的信號則選擇較少的pilot數進行內插以減少運算複雜度且選取的方式為最接近欲內插資料的pilot信號群,透過此種方式可以同時減少運算複雜度和維持解碼準確性。
此外,本篇研究的另一主題是將內插式QR分解應用於結合晶格演算法(LR)的MIMO-OFDM系統。LR已被提出應用於MIMO系統接收端以大幅降低解碼錯誤率,但OFDM系統中的每一個子載波(sub-carrier)皆需要一次LR運算,因此在本論文中提出利用內插式QR分解減少LR在系統中的運算量,並附上模擬的結果、運算量和硬體分析,此外,採用群組(group)架構,在硬體設計上可以根據需求作彈性的調整。從模擬和分析的結果顯示,結合內插式QR分解有效且大幅降低系統複雜度。
[1] “3GPP TS 36.211-3rd Generation Partnership Project,Technical Specification Group Radio Access Network,Evolved Universal Terrestrial Radio Access (EUTRA), Physical channels and modulation,” Rev.10.0.0,December 2010.
[2] P. L. Chiu and Y. H. Huang, “A scalable MIMO detection architecture with nonsorted multiple-candidate selection,” in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, may 2009, pp. 689 –692.
[3] X. Cao, “Local maximum likelihood detection method for MIMO systems,” in Com-munications, Circuits and Systems, 2005. Proceedings. 2005 International Confer-ence on, vol. 1, may 2005, pp. 203 – 206 Vol. 1.
[4] P.Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-blast: an architecture for realizing very high data rates over the rich-scattering wireless channel,” oct 1998, pp. 295–300.
[5] M. Shabany and P. Gulak, “Scalable VLSI architecture for K-best lattice decoders,”in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, may 2008, pp. 940 –943.
[6] Y. Wang and K. Roy, “A new reduced-complexity sphere decoder with true latticeboundary-awareness for multi-antenna systems,” in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, may 2005, pp. 4963 – 4966 Vol.5.
[7] A. K. Lenstra, H. W. Lenstra, and L. Lov´asz, “Factoring polynomials with rational coefficients,” in Math. Annalen, vol. 261, 1982, pp. 515–534.
[8] M. Sandell, A. Lillie, D. McNamara, V. Ponnampalam, and D. Milford, “Complexity study of lattice reduction for MIMO detection,” in IEEE Wireless Communica-tions and Networking Conference, May 2007, pp. 1421–1424.
[9] H. Yao and G. Wornell, “Lattice-reduction-aided detectors for MIMO communication systems,” in IEEE Global Telecommunications Conference, vol. 1, Nov. 2002, pp. 424–428.
[10] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Math. Annalen, vol. 261, pp. 515–534, 1982.
[11] D. Cescato, M. Borgmann, H. B¨olcskei, J. Hansen, and A. Burg, “Interpolationbased QR decomposition in MIMO-OFDM systems,” in Proc. IEEE 6th Workshop on Signal Processing Advance in Wireless Communication, pp. 945–949, Jun 2005.
[12] D. Cescato and H. B¨olcskei, “Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems,” IEEE Transaction on Signal Processing, Oct. 2009.
[13] D. W¨ubben and K. Kammeyer, “Interpolation-based successive interference cancellation for per-abtenna-coded MIMO-OFDM systems using p-sqrd,” in Proc. IEEE Workshop on Smart Antennas, Mar 2006.
[14] B. J. Choi, C. An, J. Yang, J. S, and D. K. Kim, “Complexity reduction for lattice reduction aided detection in MIMO-OFDM systems,” in International Conference on Computer and Automation Engineering, vol. 2. IEEE, 2010, pp. 801–806.
[15] Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low-complexity full-diversity mimo detection,” 2009, pp. 2701–2710.
[16] C. F. Liao, F. Lan, and Y. H. Huang, “Latency-constrained low-complexity lattice reduction for mimo-ofdm systems,” in in IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP 2011), May 2011.
[17] A. Burg, “Vlsi circuits for mimo communication systems,” 2006.
[18] ˚A. Bj¨orck and C. C. Paige, “Loss and recapture of orthogonality in the modified Gram-Schmidt algorithm,” SIAM J. Matrix Anal. Appl., vol. 13, pp. 176–190, 1992.
[19] D. W¨ ubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “MMSE-based latticereduction for near-ML detection of MIMO systems,” in ITG Workshop on Smart Antennas, May 2004, pp. 106–113.
[20] B. J. Choi, C. An, J. Yang, J. S, and D. K. Kim, “Complexity reduction for lattice reduction aided detection in MIMO-OFDM systems,” in International Conference on Computer and Automation Engineering, vol. 2. IEEE, 2010, pp. 801–806.