研究生: |
莊世璋 Chuang, Shih-Chang |
---|---|
論文名稱: |
軟性神經探針之三維組裝的設計與製程 Design and Fabrication of Flexible Neural Microprobe for Three Dimensional Assembly |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 三維組裝 、微電極陣列 、軟性基材 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主題主要是著重於開發一”軟性三維立體微電極陣列”,希望能運用在長時間大腦神經訊號的紀錄。大腦裡面有數以千億計的神經細胞,讓我們能夠因應外界的環境變化而產生適當的身體反應, 並且有思考、記憶、情緒變化的能力,當神經受損時,神經介面可以被使用來幫忙傳遞或刺激訊號。
目前以矽基材的微電極陣列最為普遍,但由於常會有發炎的症狀,因此這幾年已開始往軟性高分子來發展,本次將提出一” 軟性三維立體微電極陣列”的製作,先利用黃光微影、物理氣相沉積、Parylene、UV和乾式蝕刻等等技術,完成複合式軟性平面微電極,再使用靜電驅動和微流道的設計,引入PEG固定微電極來完成出平面的組裝。
機械強度測試方面,製作出的微電極確實可以成功地刺入假腦內;生物活體的實驗方面,第一代探針從美國螯蝦的脫逃神經系統中量測到神經訊號,誘發出的動作電位振幅約為±75 μV。
未來的目標將把目前第二代三維立體微電極陣列的研究成果,設計到鼠腦皮層的紀錄上面;同時,也會進行材料的耐久性及生物相容性的測試,以達到最終可以運用到長時間大腦神經訊號的記錄上面。
[1] Brain Waves, "http://brainwaves.corante.com/archives/2007/08/02/consciousness_restored_to_man_after_six_years_with_deep_brain_stimulation.php"
[2] 人工電子耳, "http://www.cochlear.com.tw/"
[3] 王秀園, "都是腦子惹的禍," 童心房, 台北縣, 2004。
[4] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, "Direct Cortical Control of 3D Neuroprosthetic Devices " Science, vol. 296, pp. 1829-1832, 2002.
[5] M. A. Lebedev, and M. A. L. Nicolelis, "Brain-Machine Interfaces: Past, Present and Future," Trends in Neurosciences, vol. 29, pp. 536-546, 2006.
[6] T. Suzuki, S. Takeuchi, D. Ziegle, O. Fukayama, Y. Morishita, D. Frutiger, K. Ishii, and K. Mabuchi, "Development of Flexible Neural Probes and their Application to Rat Brain Interfaces," SICE Annual Conference, Sapporo, Japan, August 4-6, 2004.
[7] A. Bozkurt, R. Gilmour, D. Stern, and A. Lal, "MEMS Based Bioelectronic Neuromuscular Interfaces for Insect Cyborg Flight Control," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.
[8] K. C. Cheung, "Implantable Microscale Neural Interfaces," Biomedical Microdevices, vol. 9, pp. 923-938, 2007.
[9] Nervous System and Brain, "http://biologyclass.neurobio.arizona.edu/lect2b.html"
[10] I. W. Donald, "Production, Properties and Applications of Microwire and Related Products," Journal of Materials Science, vol. 22, pp. 2661-2679, 1987.
[11] F. Strumwasser, "Long-Term Recording from Single Neurons in Brain of Unrestrained Mammals," Science, vol. 127, pp. 469-470, 1958.
[12] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, "Microelectrodes, Microelectronics, and Implantable Neural Microsystems," Proceedings of the IEEE, vol. 96, pp. 1184-1202, 2008.
[13] G. Purushothaman, B. B. Scott, and D. C. Bradley, "An Acute Method for Multielectrode Recording from the Interior of Sulci and other Deep Brain Areas," Journal of Neuroscience Methods, vol. 153, pp. 86-94, 2006.
[14] H. Takahashi, J. Suzurikawa, M. Nakao, F. Mase, and K. Kaga, "Easy-to-Prepare Assembly Array of Tungsten Microelectrodes," IEEE Transactions on Biomedical Engineering vol. 52, pp. 952-956, 2005.
[15] Y. Yao, G. Li, Q. Jin, and J. Zhao, "A Micromachine-Based Assembly of Tungsten Multichannel Electrodes for Neural Recording," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, January 6-9, 2008.
[16] K. D. Wise, "Silicon Microsystems for Neuroscience and Neural Prostheses," IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 22-29, 2005.
[17] J. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, "A Multichannel Neural Probe for Selective Chemical Delivery at the Cellular Level," Biomedical Engineering, IEEE Transactions on, vol. 44, pp. 760-769, 1997.
[18] J. F. Hetke, J. C. Williams, D. S. Pellinen, R. J. Vetter, and D. R. Kipke, "3-D Silicon Probe Array with Hybrid Polymer Interconnect for Chronic Cortical Recording," Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March 20-22, 2003.
[19] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, "A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 758-768, 1991.
[20] A. N. Badi, T. R. Kertesz, R. K. Gurgel, C. Shelton, and Richard A. Normann, "Development of a Novel Eighth-Nerve Intraneural Auditory Neuroprosthesis," Laryngoscope, vol. 113, pp. 833-842, 2003.
[21] R. Bhandari, S. Negi, L. Rieth, R. A. Normann, and F.Solzbacher, "A Novel Method of Fabricating Convoluted Shaped Electrode Arrays for Neural and Retinal Prosthesis," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
[22] J. Wu, and W. C. Tnag, "Microfabrication of High-Density Microelectrode Arrays for Peripheral Intraneural Applications," Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, January 16-19, 2007.
[23] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, and R. A. Normann, "Long-Term Stimulation and Recording With a Penetrating Microelectrode Array in Cat Sciatic Nerve," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 146-157, 2004.
[24] D. J. Yao, C. H. Chen, C. C. Chiao, and S. W. Lu, "Micro Multi-probes Electrode Array for the Recording Retinal Neuron Signal," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, Jun. 10-14, 2007.
[25] D. J. Yao, C. H. Chen, S. H. Tseng, and S. R. Yeh, "Design and Fabrication of Micro Multi-Probe Electrode Arrays," The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, Jan. 16-19, 2007.
[26] 陳昶孝, "高深寬比微型多探針電極陣列系統," 國立清華大學奈米工程與微系統研究所碩士論文, 2006。
[27] K. C. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, "Implantable Multichannel Electrode Array Based on SOI Technology," Journal of Microelectromechanical Systems, vol. 12, pp. 179-184, 2003.
[28] R. Huang, C. Pang, Y.-C. Tai, J. Emken, C. Ustun, and R. Andersen, "Parylene Coated Silicon Probes for Neural Prosthesis," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, Hainan, China, January 6-9, 2008.
[29] C. Pang, J. G. Cham, S. Musallam, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "Monolithic Silicon Probes with Flexible Parylene Cables for Neural Prostheses," Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, January 18-21, 2006.
[30] C. Pang, J. G. Cham, Z. Nenadic, S. Musallam, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "A New Multi-Site Probe Array with Monolithically Integrated Parylene Flexible Cable for Neural Prostheses," The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Shanghai, China, Sept. 1-4, 2005.
[31] C. Pang, J. G.Cham, Z. Nenadic, Y. C. Tai, J. W. Burdick, and R. A. Andersen, "A New Neural Recording Electrode Array with Parylene Insulating Layer," The 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Massachusetts, USA, October 9-13, 2005.
[32] T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, "Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 890-895, 2004.
[33] T. Kawano, H. Takao, K. Sawada, and M. Ishida, "Neural Recording Chip with Penetrating Si Microprobe Electrode Array by Selective Vapor-Liquid-Solid Growth Method," Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004.
[34] K. Takei, T. Kawashima, K. Sawada, and M. Ishida, "Out-of-Plane Microtube Arrays for Biomedical Sensors Using Vapor-Liquid-Solid Growth Method," IEEE Sensors Journal, vol. 8, pp. 470-475, 2008.
[35] K. Takei, T. Kawashima, H. Takao, K. Sawada, and M. Ishida, "Si Micro Probe and SiO2 Micro Tube Array Integrated with NMOSFETs," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
[36] P. Thiébaud, C. Beuret, N. F. D. Rooij, and M. Koudelka-Hep, "Microfabrication of Pt-tip Microelectrodes," Sensors and Actuators B: Chemical, vol. 70, pp. 51-56, 2000.
[37] D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, and W. Shain, "Brain Responses to Micro-machined Silicon Devices," Brain Research, vol. 983, pp. 23-35, 2003.
[38] R. R. R. Jr, J. A. Miller, and W. M. Reichert, "Polyimides as Biomaterials: Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp. 627-635, 1993.
[39] T. Stieglitz, S. Kammer, K. P. Koch, S. Wien, and A. Robitzki, "Encapsulation of Flexible Biomedical Microimplants with Parylene C," The 7th Annual Conference of the International Functional Electrical Stimulation Society, Ljubljana, Slovenia, June 25-29, 2002.
[40] G. Voskerician, M. S. Shive, R. S. Shawgo, H. V. Recum, J. M. Anderson, M. J. Cima, and R. Langer, "Biocompatibility and Biofouling of MEMS Drug Delivery Devices," Biomaterials, vol. 24, pp. 1959-1967, 2003.
[41] B. A. Koeneman, K.-K. Lee, A. Singh, J. Heb, G. B. Raupp, A. Panitch, and D. G. Capco, "An ex Vivo Method for Evaluating the Biocompatibility of Neural Electrodes in Rat Brain Slice Cultures," Journal of Neuroscience Methods, vol. 137, pp. 257-263, 2004.
[42] A. Mercanzini, K. Cheung, D. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, A. Carleton, and P. Renaud, "Demonstration of Cortical Recording and Reduced Inflammatory Response Using Flexible Polymer Neural Probes," The 20th IEEE International Conference on Micro Electro Mechanical Systems, Kobe, Japan, January 21-25, 2007.
[43] K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, "Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis," Biosensors and Bioelectronics, vol. 22, pp. 1783-1790, 2007.
[44] A. Mercanzini, K. Cheung, D. L. Buhl, M. Boers, A. Maillard, P. Colin, J.-C. Bensadoun, A. Bertsch, and P. Renaud, "Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes," Sensors and Actuators A: Physical, vol. 143, pp. 90-96, 2008.
[45] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, "3D Flexible Multichannel Neural Probe Array," Journal of Micromechanics and Microengineering, vol. 14, pp. 104-107, 2004.
[46] E. M. Schmidt, J. S. Mcintosh, and M. J. Bak, "Long-term Implants of Parylene-C Coated Microelectrodes " Medical & Biological Engineering & Computing, vol. 26, pp. 96-101, 1988.
[47] E. M. Schmidt, M. J. Bak, and P. Christensen, "Laser Exposure of Parylene-C Insulated Microelectrodes," Journal of Neuroscience Methods, vol. 62, pp. 89-92, 1995.
[48] D. C. Rodger, A. J. Fong, W. Li, H. Ameri, I. Lavrov, H. Zhong, S. Saati, P. Menon, E. Meng, J. W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, and Y. C. Tai, "High-Density Flexible Parylene-based Multielectrode Arrays for Retinal and Spinal Cord Stimulati," Proceedings of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), Lyon, France, June 10-14, 2007.
[49] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, "Parylene Flexible Neural Probes Integrated with Microfluidic Channels," Lab on a Chip, vol. 5, pp. 519-523, 2005.
[50] T. Suzuki, D. Ziegler, K. Mabuchi, and S. Takeuchi, "Flexible Neural Probes with Micro-fluidic Channels for Stable Interface with the Nervous System," Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004.
[51] T. Suzuki, K. Wuchi, and S. Takeuchi, "A 3D Flexible Parylene Probe Array for Multichannel Neural Recording," Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March 20-22, 2003.
[52] Y. Kato, I. Saito, T. Hoshino, T. Suzuki, and K. Mabuchi, "Preliminary Study of Multichannel Flexible Neural Probes Coated with Hybrid Biodegradable Polymer," Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3, 2006.
[53] Y. Kato, M. Nishino, I. Saito, T. Suzuki, and K. Mabuchi, "Flexible Intracortical Neural Probe with Biodegradable Polymer for Delivering Bioactive Components," Proceedings of 2006 International Conference on Microtechnologies in Medicine and Biology, Okinawa, Japan, May 9-12, 2006.
[54] H. Lu, S. H. Cho, J. B. Lee, L. Cauller, M. R. Ortega, and G. Hughes, "SU8-Based Micro Neural Probe for Enhanced Chronic in-Vivo Recording of Spike Signals from Regenerated Axons," The 5th IEEE Conference on Sensors, Daegu, Korea, October 22-25, 2006.
[55] B. A. Hollenberg, C. D. Richards, R. Richards, D. F. Bahr, and D. M. Rector, "A MEMS Fabricated Flexible Electrode Array for Recording Surface Field Potentials," Journal of Neuroscience Methods, vol. 153, pp. 147–153, 2006.
[56] L. J. Fernandez, M. Tijero, R. Vilares, J. Berganzo, K. Mayora, and F. J. Blanco, "SU-8 Based Microneedle for Drug Delivery in Nanomedicine Applications with Integrated Electrodes," Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences(μTAS2007), Paris,France, October 7-11, 2007.
[57] H. Y. Chan, D. M. Aslam, S. H. Wang, G. M. Swain, and K. D. Wise, "Fabrication and Testing of a Novel All-Diamond Neural Probe for Chemical Detection and Electrical Sensing Applications," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.
[58] H. Y. Chan, M. Varney, D. M. Aslam, and K. D. Wise, "Fabrication and Characterization of All-Diamond Microprobes for Electrochemical Analysis," Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, January 6-9, 2008.
[59] M. Schuettler, S. Stiess, B. V. King, and G. J. Suaning, "Fabrication of Implantable Microelectrode Arrays by Laser Cutting of Silicone Rubber and Platinum Foil," Journal of Neuroscience Methods, vol. 2, pp. S121-S128, 2005.
[60] H. Zhu, J. He, and B. Kim, "Surface-Micromachined Neural Sensors with Integrated Double Side Recordings on Dry-Etch Benzocyclobutene(BCB) Substrate," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
[61] 靜電簡介, "http://www.esd.org.cn/BIG/introduce.html"
[62] N. S. Shaar, G. Barbastathis, and C. Livermore, "Cascaded Mechanical Alignment for Assembling 3D MEMS," The 21st IEEE International Conference on Micro Electro Mechanical Systems, Tucson, Arizona, USA, January 13-17, 2008.