研究生: |
李孟倫 Lee, Meng-Lun |
---|---|
論文名稱: |
鋰離子二次電池電極與電解液介面現象的研究與應用 Studies and applications of the electrode/electrolyte interface in Lithium-ion secondary batteries |
指導教授: |
施漢章
Shih, Han C. 葉均蔚 Yeh, Jien-Wei |
口試委員: |
薛富盛
陳金銘 莊東漢 施漢章 葉均蔚 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 142 |
中文關鍵詞: | 鋰離子二次電池 、石墨 、表面改質 、電解液 、添加劑 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子二次電池(LIB)因為擁有高能量密度、輕量化與環保的特性而被大量應用在可攜式電子產品的電源上。近年來除了針對電極中主要活性物質進行探討之外,許多研究也發現電解液與電極的固液異相介面對電池電性的影響也是至關重要,該介面不只影響電池的長效循環穩定性甚至與電池的安全性有關。在此研究中,三種方式被用來改良此介面的性質: (1)由基礎著手,針對單一活物顆粒進行表面包覆;(2)進一步直接在製作完成的電極片上作鍍膜;(3)從另一方面進行,改變電解液的添加成分再反應到電極表面上。
鋰鈦氧(LTO)包覆石墨顆粒以溶凝膠法合成再經過燒結得到。此核(石墨)殼(鋰鈦氧)結構中石墨顆粒大小為20 µm,而鋰鈦氧的厚度約為60-100 nm。此鋰鈦氧-石墨化合物作為鋰離子負極活物,與原本的石墨比起來可提高充電電流耐受性以及常溫下和55˚C下的循環壽命;電化學阻抗分析(EIS)中顯示,鋰鈦氧-石墨化合物負極在60次循環的過程中明顯抑制了阻抗升高;此外,以拉曼(Raman)圖譜測試在常溫與55˚C的60次循環充放電前後的電極之ID/IG (無序碳/石墨化碳結構)的比值,發現純的石墨負極在60次的循環後,此比值有重大的增加,顯示石墨化結構的大量受破壞;而鋰鈦氧包覆的石墨電極在60次的循環後此比值僅有微量增加。
原子級膜濺鍍法(ALD)為一新的電極加工方式,將二氧化鈦(TiO2)奈米膜層均勻的鍍在先前製備完成的石墨負極上。經由精確的厚度控制(約40 nm)所製備出的二氧化鈦-石墨電極在循環壽命上有優異表現;表面阻抗方面,在100個充放電循環下仍可以有效抑制質傳阻抗(Rct)的增加,且在拉曼圖譜中此二氧化鈦-石墨負極在充放電循環後也顯示出完整石墨結構的保持性。此兩種針對石墨碳材的表面改質由於增加了電解液與電極界面(SEI)的穩定性,使得在充放電過程中維持了電極中石墨結構的穩定性,進而提升了電池的循環壽命。
槲皮素(Quercetin) 是一有機抗氧化劑,在此被添加到鋰離子電池的電解液(LiPF6/EC+ EMC+DMC)中強化了電池的電化學特性,包括循環壽命過充電耐受度及安全性;且在特定的(0.05%)添加量下,對原本電性(C-rate)無不良影響。鋰鈷氧(LiCoO2)與碳組成的全電池在3C-6V過負載充電下,有添加槲皮素的電池與一般電池比較可延長損毀時間高達800秒。此改善現象源自電解液添加劑所誘導之電極表面鈍化微結構的形成,一方面減少電極與電解液的直接接觸,另一方面抑制了表面阻抗的增加。
本研究針對鋰離子電池電解液與電介面,提供可行之改善方法來提升電性效能以滿足電器中高功率、長效循環與安全性的訴求。
Rechargeable lithium-ion batteries (LIBs) have been widely used as a power source for many portable electronic devices due to the high energy density, light and environmental friendly. In recent years, many researches have pointed out that aside from the active materials dominating the electrochemical properties of a battery, the most attractive topic is the electrolyte and the related heterogeneous electrolyte and electrode interface/interphase. The interface of electrolyte and electrode not only affect the long term cycling stability but also refers to the safety quality of a battery. In this study, three ways are used to modify the circumstance of the interface: (1) the fundamental surface coating on single particle of active material, (2) one step ahead of depositing compound directly onto the finished electrode, and (3) in contrast to modify the electrolyte transforming the reaction back to the electrode surface.
Li4Ti5O12 (LTO)-coated graphite as an anode material for Li-batteries is synthesized. The surface of graphite powders is uniformly coated by the LTO nanoparticles to form a core-shelled structure via a sol-gel process, followed by calcination. The average size of graphite core is 20 µm while the thickness of LTO shell is 60 to 100 nm. We found that LTO-coated graphite has better rate-capability and cycle life at RT and at 55˚C, compared with the pristine graphite. The electrochemical impedance spectroscopy (EIS) results of the cell with LTO-coated graphite anode showed a significant suppression of the impedance rise after 60 cycles. In addition, the Raman spectrum showed that after 60 charge-discharge cycles at 55˚C, the ID/IG ratio of the LTO-coated graphite electrode increased slightly, while that of the pristine graphite electrode increased significantly.
Atomic layer deposition (ALD) acts as a novel process to fabricate TiO2 nano-layer with high uniformity by ALD technique on a completive graphite negative electrode of lithium battery is reported. Under accurate thickness control, a TiO2 plated (~40 nm) graphite electrode shows remarkable performance in cycle life. The surface resistance of the electrode has been suppressed after 100 charge-discharge cycles and the stability of surface graphite layer structure has been maintained after 60 cycles. The deposition strategy directly on the electrode shows a resemble purpose as well as the core-shell particle coating of active materials.
Quercetin, an organic antioxidant, has been employed as an additive in lithium-ion cells to enhance the electrochemical performance to enhance the cycle life and the overcharging characteristics of LiPF6/EC+ EMC+DMC (1 M) when used as an electrolyte. A LiCoO2/graphite full cell with 0.05% quercetin showed a significant improvement in safety associated with overcharging tolerance and thermal stability, without causing damage on electrochemical properties including C-rate and cycle life. Under the 3C-6V charging circumstance, the LIB with quercetin contained has postponed the vented time for more than 800 s, comparing to the normal battery.
Improvements might result from the formation of a passivation microstructure on the electrode’s surface which could both minimize the reaction between electrode and electrolyte and suppress the surface impedance increase of the interface, especially suppresses the increase in the charge-transfer resistance. The studies focused on electrolyte and electrode interface of Li-ion cells provide a viable way to improve the power source for the applications involving electric devices with high rate, long term cycling, and high safety requirements.
[1] N.A. Kaskhedikar, and J. Maier, “Lithium storage in carbon nanostructures” Adv. Mater., 21(2009) 2664-2680.
[2] M. Inaba, and Z. Ogumi, “Up-to-date development of lithium-ion batteries in Japan” IEEE Electrical Insulation Magazine, 17 (2001) 6-20.
[3] T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery” Prog. Batt. Solar Cells, 9 (1990) 209-217.
[4] C. Delmas, “Alkali metal intercalation in layered oxides” Mater, Sci. Eng. B, 3 (1-2) (1989) 97-101.
[5] J.M. Chen, C.L. Tsai, C.Y. Yao, S.P. Sheu and H.C. Shih, “Experimental design method applied to Li/LiCoO2 rechargeable cells” Mater. Chem. Phys., Vol. 51/2, (1997) 100-194.
[6] C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A.Chadwick, M. Broussely, F. Perton, Ph. Biensan and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview” J. Power Sources 68 (1997) 120.
[7] D. G. Wickham and W. J. Croft, “Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese” J. Phys. Chem. Solids, 7 (1958) 351-360.
[8] J. C. Hunter, “Preparation of A New crystal form of manganese- dioxide – lambda-MnO2” J. Solid State Chem., 39 (1981) 142-147.
[9] S.G. Stewart, V. Srinivasan, J. Newman, “Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation” J. Electrochem. Soc., 155 (2008) A664–A671
[10] M.S. Whittingham, “Lithium batteries and cathode materials” Chem. Rev., 104 (2004) 4271–4301.
[11] X.-H. Liu, T. Saito, T. Doi, S. Okada, J.-I. Yamaki, “Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode” J. Power Sources, 189 (2009) 706–710
[12] Z. Lu, D.D. MacNeil, J.R. Dahn, “Layered Li [ NixCo1 − 2xMnx ] O 2 cathode materials for lithium-Ion batteries” Electrochem. Solid State Lett. 4 (2001) A200-203.
[13] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries”Chem. Lett. (2001) 642-643.
[14] T. Ohzuku, Y. Makimura, “Layered lithium insertion material of LiNi1/2Mn1/2O2 : a possible alternative to LiCoO2 for advanced lithium-ion batteries” Chem. Lett. (2001) 744-745.
[15] K.M. Shaju, S. Rao, B.V.R. Chowdari, “Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries” Electrochim. Acta, 48 (2002) 145–151.
[16] H.S. Kim, M. Kong, K. Kim, I.J. Kim, H.B. Gu, “Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries” J. Power Sources, 171 (2007) 917–921.
[17] S. Levasseur, M. Menetrier, C. Delmas, “Combined effects of Ni and Li doping on the phase transitions in LixCoO2 electrochemical and 7Li nuclear magnetic resonance studies” J. Electrochem. Soc. 149 (2002) A1533-1540.
[18] Z.H. Lu, D.D. MacNeil, J.R. Dahn, “Layered cathode materials Li[NixLi (1/3-2x/3)Mn (2/3-x/3)]O 2 for lithium-ion batteries” Electrochem. Solid-State Lett. 4 (2001) A191-A194.
[19] Y.S. Hong, Y.J. Park, K.S. Ryu, S.H. Chang, M.G. Kim, “Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2 prepared by a simple combustion method” J. Mater. Chem. 14 (2004) 1424-1429.
[20] H.X. Deng, I. Belharouak, Y.K. Sun, K. Amine, “LixNi0.25Mn0.75Oy (0.5≤x≤2, 2≤y≤2.75) compounds for high-energy lithium-ion batteries” J. Mater. Chem. 19 (2009) 4510-4516.
[21] T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, “High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1” J. Mater. Chem. 21 (2011) 10179-10188.
[22] L.Q. Zhang, K. Takada, N. Ohta, K. Fukuda, T. Sasaki, “Synthesis of (1 − 2x)LiNi1/2Mn1/2O2•xLi[Li1/3Mn2/3]O2•xLiCoO2 (0 ≤ x ≤ 0.5) electrode materials and comparative study on cooling rate” J. Power Sources 146 (2005) 598-601.
[23] J.M. Zheng, X.B. Wu, Y. Yang, “A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery” Electrochim. Acta 56 (2011) 3071-3078.
[24] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Source, 74 (1998) 219-227.
[25] H Shi, J. Barker, M. Y. Saidi, R. Koksbang, “Structure and lithium intercalation properties of synthetic and natural graphite” J.Electrochem. Soc., 143 (1996) 3466.
[26] I. Mochida, Y. Korai, C. Hunku, “Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch” Carbon, 38 (2000) 305-328.
[27] A. Hiroyuki, S. MasHio, O. Ken, “Practical performances of Li-ion polymer batteries with LiNi0.8Co0.2O2, MCMB, and PAN-based gel electrolyte” J. Power Sources, 112(2) (2002) 577-582.
[28] 王紅強。中間相碳球的製備及其電化學性能研究﹝博士論文﹞長沙: 中南大學,2003
[29] J. Read, D. Forster, J. Wolfenstine, “SnO2-carbon composites for lithium-ion battery anodes” J. Power Sources, 96 (2001) 277-281.
[30] T. Tsutomu, S. Morhiro, S. Atushi, “Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries” J. Power Sources, 90 (2000) 45-51.
[31] M. Endo, “Structural characterization of milled mesophase pitch-based carbon fibers” Corbon, 36(11) (1998) 1633-1641.
[32] C. Jiang, E. Hosono, H. Zhou, “Nanomaterials for lithium ion batteries” Nano Today 1 (2006) 28–33.
[33] M.S. Whittingham, “Materials challenges facing electrical energy storage” MRS Bull 33 (2008) 411–419.
[34] T. Ishihara, A. Kawahara, H. Nishiguchi, M. Yoshio, Y. Takita, “Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery” J. Power Sources 97-98 (2001) 129–132.
[35] S. Yang, J. Huo, H. Song, X. Chen, “A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries” Electrochim. Acta 53 (2008) 2238–2244.
[36] X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen, J.K. Kim, “Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review” Composites Science and Technology 72 (2012) 121–144.
[37] W.R. Liu, S.L. Kuo, C.Y. Lin, Y.C. Chiu, C. Y. Su, H.C. Wu, C.T. Hsieh, “Characterization and electrochemical behavior of graphene-based anode for Li-ion batteries” The Open Materials Science Journal 5 (Suppl 1: M6) (2011) 236-241.
[38] E.Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries” Nano Lett 8 (2008) 2277-2282.
[39] G. Wang, X. Shen, J. Yao, J. Park, “Graphene nanosheets for enhanced lithium storage in lithium ion batteries” Carbon 47 (2009) 2049-2053.
[40] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions” Solid State Ionics 148 (2002) 405–416.
[41] J.S. Kim, Y.T. Park, “Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery” J. Power Sources 91 (2000) 172–176.
[42] S.K. Jeong, M. Inaba, T. Abe, Z. Ogumi, “Surface film formation on graphite negative electrode in lithium-ion batteries: AFM study in an ethylene carbonate-based solution” J. Electrochem. Soc. 148 (2001) A989–A993.
[43] Akira Yoshino, “These ten years and feature of rechargeable battery materials” 110 (2003).
[44] T. Ohzuku, A. Ueda, N. Yamamoto, “Zero‐strain insertion material of Li [ Li1 / 3Ti5 / 3 ] O 4 for rechargeable lithium cells” J. Electrochem. Soc. 142 (1995) 1431-1435.
[45] H. Ge, N. Li, D. Li, C. Dai, D. Wang, “Study on the theoretical capacity of Spinel lithium titanate induced by low-potential intercalation” J. Phys. Chem. C 113 (2009) 6324-6326.
[46] C.T. Hsieh, J.Y. Lin, “Influence of Li addition on charge/discharge behavior of spinel lithium titanate” J. Alloys Compd. 506 (2010) 231-236.
[47] H. Shiiba, M. Nakayama, M. Nogami, “Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system” Solid State Ionics 181 (2010) 994-1001.
[48] M.R. Harrison, P.P. Edwards, J.B. Goodenough, “A study of the Li1+xTi2−xO4 spinel system by diffuse-reflectance spectroscopy” J. Solid State Chem. 54 (1984) 426-437.
[49] M.N. Obrovac, Leif Christensen, Dinh Ba Le, J. R. Dahn, “Alloy design for lithium-ion battery anodes” J. Electrochem. Soc., 154 (2007) A849-A855.
[50] J.W. Kim, J.H. Ryu, K.T. Lee, S.M. Oh, “Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries” J. Power Sources 147 (2005) 227-233.
[51] H. Kim, J. Choi, H.J. Sohn, T. Kang, “The insertion mechanism of lithium into Mg2Si anode material for Li‐ion batteries” J. Electrochem. Soc. 146 (1999) 4401-4405.
[52] J. Yang, M. Wachtler, M. Winter, J.O. Besenhard, “Sub‐microcrystalline Sn and Sn ‐ SnSb powders as lithium storage materials for lithium‐ion batteries” Electrochem. Solid-State Lett. 2 (1999) 161-163
[53] K.D. Kepler, J.T. Vaughey, M.M. Thackeray, “Copper–tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system” J. Power Sources 81–82 (1999) 383-387.
[54] M.A. Reddy, U.V. Varadaraju, “NbSb2 as an anode material for Li-ion batteries” J. Power Sources 159 (2006) 336-339.
[55] S. Yoon, A. Manthiram, “Sb-MOx-C (M = Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries” Chem. Mater. 21 (2009) 3898-3904.
[56] I. Kim, P.N. Kumta, G.E. Blomgren, “Si/TiN nanocomposites. novel anode materials for Li-ion batteries” Electrochem. Solid-State Lett. 3 (2000) 493-496.
[57] C. Park, Y.U. Kim, H. Kim, H.J. Sohn, “Enhancement of the rate capability and cyclability of an Mg–C composite electrode for Li secondary batteries” J. Power Sources 158 (2006) 1451-1455.
[58] S.D. Beattie, T. Hatchard, A. Bonakdarpour, K.C. Hewitt, J.R. Dahn, “Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries” J. Electrochem. Soc. 150 (2003) A701-A705.
[59] O. Mao, R.A. Dunlap, J.R. Dahn, “Mechanically alloyed Sn‐Fe(‐C) powders as anode materials for Li‐ion batteries: I. the Sn2Fe ‐ C system” J. Electrochem. Soc. 146 (1999) 405-413.
[60] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, “Insertion electrode materials for rechargeable lithium batteries” Adv. Mater. 10 (1998) 725-763.
[61] D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.C. Jumas, J.M. Tarascon, “Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries” J. Mater. Chem. 17 (2007) 3759-3772.
[62] M.M. Thackeray, J.T. Vaughey, L.M.L. Fransson, “Recent developments in anode materials for lithium batteries” J. Met. 54 (2002) 20-23.
[63] M. Winter, J.O. Besenhard, “Electrochemical lithiation of tin and tin-based intermetallics and composites” Electrochim. Acta 45 (1999) 31-50.
[64] R. Benedek, M.M. Thackeray, “Lithium reactions with intermetallic-compound electrodes” J. Power Sources 110 (2002) 406-411.
[65] U. Kasavajjula, C. Wang, A.J. Appleby, “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells” J. Power Sources 163 (2007) 1003-1039.
[66] W.-J. Zhang, “A review of the electrochemical performance of alloy anodes for lithium-ion batteries” J. Power Sources, 196 (2011) 13-24.
[67] H. Ikeda, K. Terada, “Present status and prospects of lithium ion batteries: part I” Valqua Review, 42 (1998) 1-7
[68] Y. Matsuda, Z. Takehara (Eds.), “Denchi Binran (Battery Handbook),” 3rd Ed., Maruzen, Tokyo (2001) 278
[69] X. Wang, E. Yasukawa, S. Kasuya, “Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode” J. Electrochem. Soc., 148 (2001) A1066-A1071.
[70]鄭錦淑, 楊長榮, 許榮木 : 工業材料 2009, 275卷, p81.
[71] J.R. Dahn, E.W. Fuller, M. Obrovac, U. Von Sacken, “Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells” Solid State Ionics. 69 (1994) 265-270.
[72] K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, “An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes” J. Electrochem. Soc., 149 (2002) A622-A626.
[73] Y.-H. Li, M.-L. Lee, F.-M. Wang, C.-R. Yang, P.J. Chua, J.-P. Pan, “Electrochemical characterization of a branched oligomer as a high-temperature
and long-cycle-life additive for lithium-ion batteries” Electrochim. Acta 85 (2012) 72-77.
[74] C. Korepp, W. Kern, E.A. Lanzer, P.R. Raimann, J.O. Besenhard, M. Yang, K.C. Moller, D.T. Shieh, M. Winter, “4-Bromobenzyl isocyanate versus benzyl isocyanate—New film-forming electrolyte additives and overcharge protection additives for lithium ion batteries” J. Power Sources 174 (2007) 637-642.
[75] J.K. Feng, X.P. Ai, Y.L. Cao, H.X. Yang, “A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries” Electrochem. Commun. 9 (2007) 25-30.
[76] J.S. Kim, Y.T. Park, “Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery” J. Power Sources 91 (2000) 172-176.
[77] M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev, R.J. Staniewicz, “Aging mechanism in Li ion cells and calendar life predictions” J. Power Sources 97-98 (2001) 13-21.
[78] J.O. Besenhard, M. Winter, J. Yang, W. Biberacher, “Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes” J. Power Sources 54 (1995) 228-231.
[79] D. Aurbach, M.D. Levi, A. Schechter, “Failure and stabilization mechanisms of graphite electrodes” J. Phys. Chem. B 101 (1997) 2195-2206.
[80] E. Peled, D. Golodnitsky, C. Menachem, D. Bar-Tow, “An advanced tool for the selection of electrolyte components for rechargeable lithium batteries” J. Electrochem. Soc. 145 (1998) 3482-3486.
[81] Y.P. Wu, C. Jiang, C. Wang, R. Holze, “Anode materials for lithium ion batteries by oxidative treatment of common natural graphite” Solid State Ionics 156 (2003) 283-290.
[82] Y.P. Wu, E. Rahm, R. Holze, “Carbon anode materials for lithium ion batteries” J. Power Sources 114 (2003) 228-236.
[83] J.J. Li, X.M. He, C.Y. Jiang, C.R. Wan, “Coke coating of natural graphite for Li-ion batteries” J. New Mater. Electrochem. Syst. 9 (2006) 21-23.
[84] M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, “Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material” J. Electrochem. Soc. 147 (2000) 1245-1250.
[85] J.P. Olivier, M. Winter, “Determination of the absolute and relative extents of basal plane surface area and “non-basal plane surface” area of graphites and their impact on anode performance in lithium ion batteries” J. Power Sources (2001) 151-155.
[86] J.B. Goodenough, Y. Kim, “Challenges for rechargeable Li batteries” Chem. Mater., 22 (2010) 587-603.
[87] T. Placke, V. Siozios, R. Schmitz, S.F. Lux, P. Bieker, C. Colle, H.W. Meyer, S. Passerini, M. Winter, “Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries” J. Power Sources 200 (2012) 83-91.
[88] P. Novák, J.C. Panitz, F. Joho, M. Lanz, R. Imhof, M. Coluccia, “Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries” J. Power Sources 90 (2000) 52-58.
[89] M. Winter, “The solid electrolyte interphase – the most important and the least understood solid electrolyte in rechargeable Li batteries” Z. Phys. Chem. 223 (2009) 1395-1406.
[90] K.K. Guo, Q.M. Pan, S.B. Fan, “Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries” J. Power Sources 111 (2002) 350-356.
[91] H. Zhao, J. Ren, X. He, J. Li, C. Jiang, C. Wang, “Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries” Electrochim. Acta 52 (2007) 6006-6011.
[92] A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, “Modification of Interface Between LiCoO2 Electrode and Li2S – P2S5 Solid Electrolyte Using Li2O – SiO2 Glassy Layers” J. Electrochem. Soc. 156 (2009) A27-A32.
[93] J.W. Lee, S.M. Park, H.J. Kim, “Enhanced cycleability of LiCoO2 coated with vanadium oxides” J. Power Sources 188 (2009) 583-587.
[94] N. Kosova, E. Devyatkina, A. Slobodyuk, V. Kaichev, Solid State Ionics 179
(2008) 1745-1749.
[95] H.P. Zhang, L.C. Yang, L.J. Fu, Q. Cao, D.L. Sun, Y.P. Wu, R. Holze, ”Surface chemistry study of LiCoO2 coated with alumina” J. Solid State Electrochem. 13 (2008) 1521-1527.
[96] M.L. Lee, Y.H. Li, S.C. Liao, J.M. Chen, J.W. Yeh, H.C. Shih, “Li4Ti5O12-coated graphite as an anode material for lithium-ion batteries” Appl. Surf. Sci. 258 (2012) 5938-5942.
[97] Y. Ein-Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, “Methyl propyl carbonate: A promising single solvent for Li‐ion battery electrolytes” J. Electrochem. Soc., 144 (1997) L180-L184.
[98] D. Aurbach, Y. Ein-Eli., “The study of Li‐graphite intercalation processes in Several electrolyte systems using in situ x‐ray diffraction” J. Electrochem. Soc. 142 (1995) 1746-1752.
[99] S.S. Zhang, “A review on electrolyte additives for lithium-ion batteries” J. Power Sources. 162 (2006) 1379-1394.
[100] D. Bar-Tow, E. Peled, L. Burstein, “A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li‐ion batteries” J. Electrochem. Soc. 146 (1999) 824-832.
[101] E. Peled, D. Bar Tow, A. Merson, A. Gladkich, L. Burstein, D. Golodnitsky, “Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies” J. Power Sources, 97–98 (2001) 52-57.
[102] A.M. Andersson, K. Edström, “Chemical composition and morphology of the elevated temperature SEI on graphite” J. Electrochem. Soc., 148 (2001) A1100-A1109.
[103] A.M. Andersson, M. Herstedt, A. Bishop, K. Edström, “The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes” Electrochim. Acta., 47 (2002) 1885-1898.
[104] M. Herstedt, K. Edström, H. Rensmo, H. Siegbahn, “Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery” Electrochim. Acta, 49 (2004) 2351-2359.
[105] M. Herstedt, M. Stjerndahl, T. Gustafsson, K. Edström, “Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery” Electrochem. Commun. 5 (2003) 467-472.
[106] K. Edström, M. Herstedt, D. P. Abraham, “A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries” J. Power Sources 153 (2006) 380-384.
[107] H.-G. Schweiger, M. Multerer, M. Schweizer-Berberich, H. J. Gores, “Optimization of cycling behavior of lithium ion cells at 60°C by additives for electrolytes based on lithium bis[1,2-oxalato(2-)-O,O´] borate” Int. J. Electrochem. Sci., 3 (2008) 427-443.
[108] K. Sato, I. Yamazaki, S. Okada, J.I. Yamaki, “Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells” Solid State Ionics 148 (2002) 463-466.
[109] Y.-G. Guo, J.-S. Hu, L.-J. Wan, “Nanostructured materials for electrochemical energy conversion and storage device” Adv. Mater. 20 (2008) 2878-2887.
[110] D. S. Su, R. Schlögl , “Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications” ChemSusChem. 3 (2010) 136-168.
[111] L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, “Surface modifications on electrode materials for lithium ion batteries” Solid State Sci. 8 (2006) 113-128.
[112] C. Li , H. P. Zhang , L. J. Fu , H. Liu , Y. P. Wu , E. Rahm , R. Holze , H. Q. Wu, “Cathode materials modified by surface coating for lithium ion batteries” Electrochim. Acta 51 (2006) 3872-3883.
[113] T.-F. Yi, Y.-R. Zhu, X.-D. Zhu, J. Shu, C.-B. Yue, A.-N. Zhou, “A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery” J. Ionics 15 (2009) 779-784.
[114] S.-T. Myung , K. Amine , Y.-K. Sun , “Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries” J. Mater. Chem. 20 (2010) 7074-7095.
[115] Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, “Role of surface coating on cathode materials for lithium-ion batteries” J. Mater. Chem. 20 (2010) 7606-7612.
[116] J. Wang, X. Sun, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries” Energy Environ. Sci. 5 (2012) 5163-5185.
[117] Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Grone , S. M. George, S.-H. Lee, “Ultrathin direct atomic layer deposition on the composite electrode is critical for highly durable and safe lithium-ion batteries” Adv. Mater. 22 (2010) 2172-2176.
[118] I. Lahiri, S.-M. Oh, J. Y. Hwang, C. Kang, M. Choi, H. Jeon, R. Banerjee, Y.-K. Sun, W. Choi, “Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries” J. Mater. Chem. 21 (2011) 13621-13626.
[119] L. A. Riley, A.S. Cavanagh, S. M. George, Y. S. Jung, Y. Yan,S.-H. Lee, A. C. Dillon, “Conformal surface coatings to enable high volume expansion Li-ion anode materials” ChemPhysChem. 11 (2010) 2124-2130.
[120] L. A. Riley, A. S. Cavanagh, S. M. George, S.-H. Lee, A. C. Dillon, “Improved mechanical integrity of ALD-coated composite electrodes for Li-ion batteries” Electrochem. Solid State Lett. 14 (2011) A29-A31.
[121] E. Kang, Y. S. Jung, A. S. Cavanagh, G.-H. Kim, S. M. George, A. C. Dillon, J. K. Kim, J. Lee, “Fe3O4 Nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries” Adv. Funct. Mater. 21 (2011) 2430-2438.
[122] D. Ahn, X. Xiao, “Extended lithium titanate cycling potential window with near zero capacity loss” Electrochem. Commun. 13 (2011) 796-799.
[123] X. Xiao, P. Lu, D. Ahn, “Ultrathin multifunctional oxide coatings for lithium ion batteries” Adv. Mater. 23 (2011) 3911-3915.
[124] Y. He, X. Yu, Y. Wang, H. Li, X. Huang, “Alumina-coated patterned Amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency”Adv. Mater. 23 (2011) 4938-4941.
[125] J.-H. Lee, M.-H. Hon, Y.-W. Chung, I.-C. Leu, “The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery” Appl. Phys. A. 102 (2011) 545.
[126] M. Q. Snyder, S. A. Trebukhova, B Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp, W. J. DeSisto, “Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode” J. Power Sources 165 (2007) 379-385.
[127] R.L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process” J. Appl. Phys. 97 (2005) 121301 (52 pages).
[128] X. Meng, X.Q. Yang, X. Sun, “Emerging applications of atomic layer deposition for lithium-ion battery studies” Adv. Mater. 24 (2012) 3589-3615.
[129] M. Ritala, M. Leskela, J.P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition” Chem. Vap. Deposition 5 (1999) 7-9.
[130] H.M. Cheng, F.M.Wang, J.P. Chu, R. Santhanam, J. Rick, S.C. Lo, “Enhanced cycleabity in lithium ion batteries: resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes” J. Phys. Chem. C 116 (2012) 7629-7637.
[131] H.-Y. Wang, F.-M. Wang, “Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode” J. Power Sources 233 (2013) 1-5.
[132] W.S. Tait, “An introduction to electrochemical corrosion testing for practicing” Engineers and Scientists, Racine, Pair O Docs, Wisconsin, 1994
[133] J.R. Macdonald, “Impedance spectroscopy - emphasizing solid materials and systems” John Wiley & Sons, New York, 1987
[134] D.A. Jones, “Principles and prevention of corrosion” 2nd Ed., Simon & Schuster, 1996
[135] F. Mansfield, “New trends in the investigation of electrochemical systems by impedance techniques: multi-transfer function analysis” Elctrochim. Acta 35 (1990) 1553-1557.
[136] M. Holzapfel, A. Martinent, F. Alloin, B. Le Gorrec, R. Yazami, C. Montella, “First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy” J. Electroanal. Chem. 546 (2003) 41-50.
[137] T. Piao, S.M. Park, C.H. Doh, S.I. Moon, “Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements articles” J. Electrochem. Soc. 146 (1999) 2794-2798.
[138] Y.O. Kim, J.S.M. Park, “Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments” J. Electrochem. Soc. 148 (2001) A194-A199.
[139] John C. Vickerman, “Surface analysis-The principal techniques” John Wiley & Sons, 1997.
[140] Briggs (Ed): “Surface and interface analysis” 24:issue 9 (1996).
[141] M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, “XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method” Thin Solid Film 326 (1998) 238-244.
[142] J. F. Moulder, W. F. Stickle, P. E. Sool, K. D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, Perkin-Elmer, Eden Prairite, (1992)
[143] D.J. Gardiner, P.R. Graves, Ed., “Practical Raman spectroscopy” Springer-Verlag, Berlin, (1989)
[144] C.H. Jiang, E. Hosono, M. Ichihara, I. Honma, H.S. Zhou, “Synthesis of nanocrystalline Li4Ti5O12 by chemical lithiation of anatase nanocrystals and postannealing” J. Electrochem. Soc. 155 (2008) A553–A556.
[145] Y.F. Tang, L. Yang, Z. Qiu, J.S. Huang, “Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets” Electrochem. Commun. 10 (2008) 1513–1516.
[146] C.H. Jiang, Y. Zhou, I. Honma, T. Kudo, H.S. Zhou, “Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material” J. Power Sources 166 (2007) 514–518.
[147] Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou, “Study of silicon/polypyrrole composite as anode materials for Li-ion batteries” J. Power Sources 146 (2005) 448–451.
[148] K.C. Hsiao, S.C. Liao, J.M. Chen, “Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries” Electrochim. Acta 53 (2008) 7242–7247.
[149] S. Zhang, P. Shi, “Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte” Electrochim. Acta 49 (2004) 1475–1482.
[150] S.S. Zhang, K. Xu, T.R. Jow, “Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery” J. Power Sources 160 (2006) 1403–1409.
[151] J.-C. Panitz, P. Novak, O. Haas, “Raman microscopy applied to rechargeable lithium-ion cells - Steps towards in situ raman imaging with increased optical efficiency” Appl. Spectrosc. 55 (2001) 1131–1137.
[152] H. Wilhelm, M. Lelaurain, E. McRae, B. Humbert, “Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character” J. Appl. Phys. 84 (1998) 6552–6558.
[153] E. Markervich, G. Salitra, M.D. Levi, D. Aurbach, « Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM” J. Power Sources 146 (2005) 146–150.
[154] G.D. Wilk, R.M. Wallace, J.M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations” J. Appl. Phys. 89 (2001) 5243 (33 pages).
[155] L. Niinisto, M. Ritala, M. Leskela, “Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications” Mater. Sci. Eng., B 41 (1996) 23-29.
[156] Z. Yang, D. Choi, S. Kerisit, K.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review” J. Power Sources 192 (2009) 588-598.
[157] J. Chastain, R.C. King (Eds.), “Handbook of X-ray photoelectron spectroscopy” Physical Electronics, Eden Prairie, MN, (1995)
[158] J.D. Fergusona, A.R. Yoderb, A.W. Weimerb, S.M. George, “TiO2 atomic layer deposition on ZrO2 particles using alternating exposures of TiCl4 and H2O” Appl. Surf. Sci. 226 (2004) 393-404.
[159] Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, “Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition” J. Phys. Chem. C 115 (2011) 9498-9502.
[160] C.C. Wang, C.C. Kei, T.P. Perng, “Fabrication of TiO2 nanotubes by atomic layer deposition and their photocatalytic and photoelectrochemical applications” Nanotechnology 22 (2011) 365702.
[161] L. Xiao, X. Ai, Y. Cao, H. Yang, “Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries” Electrochim. Acta 49 (2004) 4189-4196.
[162] H. Ota, A. Kominato, W.J. Chun, E. Yasukawa, S. Kasuya, “Effect of cyclic phosphate additive in non-flammable electrolyte” J. Power Sources 119-121 (2003) 393-398.
[163] B. Ke, Y.F. Liang, Z.X. Zhong, T. Higa, O.I. Aruoma, “Evaluation of the toxicity and safety of the antioxidant beverage effective microorganisms-X (EM-X) in animal models” Environ. Toxicol. Pharmacol. 20 (2005) 313-320.
[164] X.M. Feng, X.P. Ai, H.X. Yang, “Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries” J. Appl. Electrochem. 34 (2004) 1199-1203.
[165] L.L. Li, L. Li, B. Wang, L.L. Liu, Y.P. Wu, T. van Ree, K.A. Thavhiwa, “Methyl phenyl bis-methoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries” Electrochim. Acta 56 (2011) 4858-4864.
[166] Q.C. Zhuang, T. Wei, L.L. Du, Y.L. Cui, L. Fang, S.G. Sun, “An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4” J. Phys. Chem. C 114 (2011) 8614-8621.
[167] B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam, K. Ragavendran, “Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region” J. Power Sources 195 (2010) 4255-4265.
[168] P.G. Pietta, “Flavonoids as antioxidants” J. Nat. Prod. 63 (2000) 1035-1042.