研究生: |
李清平 Lee, Ching-Ping |
---|---|
論文名稱: |
二維電子氣系統在強磁場下電性非平衡現象之研究 Electric instability in a two-dimensional electron gas system under high magnetic fields |
指導教授: |
陳正中
Chen, Jeng-Chung |
口試委員: |
林大欽
許世英 洪在明 許耀銓 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 二維電子氣 、電性不穩性 、負微分電阻 |
外文關鍵詞: | two-dimensional electron gas, electric instability, negative differential resistance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此份論文研究砷化鎵/砷化鎵鋁異質結構二維電子氣在強磁場下的電性不穩定行為。當外加直流電流超過臨界電流後,二維電子氣的縱向電位會突然下降、擾動,表現出電性不穩定的行為。此現象只出現在蘭道能級是完全分開的情況下、其填充系數小於2,且晶格溫度相對高溫的環境下。我們發現臨界電流會隨著磁場增加而增加,也會隨著晶格溫度增加而增加。然而,相對的,電性不穩定的行為是隨著磁場增加而增加,卻隨著溫度增加而減小。
電性不穩定的發生可以由兩個現象學理論來解釋,其一是Andreev等人[25]所發表的理論,其二是Kurosawa等人[1]所發表的理論。數據分析的結果顯示縱向電阻會隨著外加電流增加而下降,且當加外電流增加至臨界電流時,會有負微分電阻的產生,負微分電阻被認為是電性不穩定的前兆。電性不穩定是由於負微分電阻的存在,造成材料內部有電荷域的生成。縱向電阻率隨著外加電流的下降可以被歸因於電子能量分部的改變以及電子在蘭道能級之間的跳躍。
We present a study of electric instability in GaAs/AlGaAs hetero-structure two-dimensional electron gas system under high magnetic fields. As the applied dc current exceeds a threshold value Ith, the longitudinal voltage Vxx drops, fluctuates and exhibits electric instability. The observed instability occurs only in well-separated low-lying Landau levels with a filling factor ν ≦ 2 at relatively high lattice temperatures. We find that Ith increases with increasing magnetic field B and the lattice temperature TL. In contrast, electric instability becomes more pronounced at higher B, but gradually diminishes with increasing TL.
The onset of electric instability has been predicted by two phenomenological theories, one is the theory of Andreev et al. [25], and the other is the theory of Kurosawa et al. [ 1]. Data analysis suggests that longitudinal resistance Rxx is suppressed by increasing I and exhibits negative differential resistivity (NDR) when I = Ith, where NDR is viewed as a precursor signal of electric instability. The electric instability is caused by domain growth. The electric instability is actuated by the suppression of Rxx with increasing I, which can be understood in terms of the capability of the spectral diffusion of electrons and electron transfer to higher levels via inelastic inter-Landau levels scattering within the limit of one-occupied Landau level.
[1] Tatsumi KUROSAWA, Hajime MAEDA and Hidehiko SUGIMOTO, “Hot Carrier
Instability in a Magnetic Field,” J. Phys. Soc. Japan, vol. 36, no. 2, pp. 491, 1974.
[2] B. K. Ridley, “Specific Negative Resistance in Solids,” Proc. Phys. Soc., vol. 82,
pp. 954, 1963.
[3] J. B. Gunn, “Microwave Oscillation of Current in III-V Semiconductors,” Solid
State Commun., vol. 1, no. 4, pp. 88, 1963.
[4] J. B. Gunn, “Instabilities of Current in III-V Semiconductors,” IBM J. Res. Dev.,
vol. 8, pp. 141, 1964.
[5] A. R. Hutson, A. Jayaraman, A. G. Chynoweth, A. S. Coriell and W. L. Feldmann,
“Mechanism of the Gunn Effect from a Pressure Experiment,” phys. Rev. Lett., vol. 14,
pp. 639, 1965.
[6] J. W. Allen, M. Shyam, Y. S. Chen and G. L. Pearson, “Microwave Oscillations in
GaAs1-xPx,” Appl. Phys. Lett., vol. 7, pp. 78, 1965.
[7] K. W. Boer and P. Voss, “Stationary Anode-Adjacent High-Field Domains in
Cadmium Sulfide,” Phys. Stat. Sol., vol. 28, pp. 355, 1968
[8] Esther M. Conwell, “Negative Differential Conductivity,” Physics Today, vol. 23,
pp. 35, 1970.
[9] R. F. Kazarinov and V. G. Skobov, “Theory of Electrical Conductivity of Ionic
Semiconductors in Strong Electric and Magnetic Fields,” Sov. Phys. JETP, vol. 17, pp.
921, 1963.
[10] F. G. Bass, “Nonlinear Galvanomagnetic Effects, Negative Resistance Regions of
Current - Voltage Characteristics, and Runaway Electrons,” Sov. Phys. JETP, vol. 21,
pp. 181, 1965.
[ 11 ] Kiichi F. Komatsubara, “Effect of Electric Field on the Transverse
Magnetoresistance in n-Indium Antimonide at 1.5 K, ” Phys. Rev. Lett., vol. 16, pp.
1044, 1966.
[12] V. N. Bogomolov, S. G. Shul’man, A. G. Aronov and G. E. Pikus, “Obtaining a
Falling Voltage - Current Characteristic in Semiconductors in Crossed Electric and
Magnetic Fields by Short Circuiting the Transverse Hall Field,” JETP Lett., vol. 5, pp.
169, 1967.
[13] M. E. Levinshtein, T. V. Lvova, D. N. Nasledov and M. S. Shur, “Magnetic Field
72
Influence on the Gunn Effect (II),” Phys. Stat. Sol. (a), vol. 1, pp. 177, 1970.
[14] A. Neumann, “Slow domains in semi-insulating GaAs,” J. Appl. Phys., vol. 90,
pp. 1, 2001.
[15] A. Patane, A. Ignatov, D. Fowler, O. Makarovsky and L. Eaves, “Hot-electrons
and negative differential conductance in GaAs1-xNx,” Phys. Rev. B, vol. 72, pp.
033312, 2005.
[16] I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov and M. A. Zudov, “Nonequilibrium
phenomena in high Landau levels,” Rev. Mod. Phys., vol. 84, pp. 1709, 2012.
[17] M. A. Zudov, R. R. Du, J. A. Simmons and J. L. Reno, “Shubnikov-de Haas-like
oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional
electron gas,” Phys. Rev. B, vol. 64, pp. 201311(R), 2001.
[18] Ramesh G. Mani, Jurgen H. Smet, Klaus von Klitzing, Venkatesh Narayanamurti,
William B. Johnson and Vladimir Umansky, “Zero-resistance states induced by
electromagnetic-wave excitation in GaAs/AlGaAs heterostructures,“ Nature (London),
vol. 420, pp. 646, 2002.
[19] M. A. Zudov, R. R. Du, L. N. Pfeiffer and K. W. West, “Evidence for a New
Dissipationless Effect in 2D Electronic Transport,“ Phys. Rev. Lett., vol. 90, pp.
046807, 2003.
[20] C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons and J. L. Reno, “Zener Tunneling
Between Landau Orbits in a High-Mobility Two-Dimensional Electron Gas,“ Phys.
Rev. Lett., vol. 89, pp. 076801, 2002.
[21] A. A. Bykov, Jing-qiao Zhang, Sergey Vitkalov, A. K. Kalagin and A. K. Bakarov,
“Effect of dc and ac excitations on the longitudinal resistance of a two-dimensional
electron gas in highly doped GaAs quantum wells,” Phys. Rev. B, vol. 72, pp. 245307,
2005.
[22] A. A. Bykov, Jing-qiao Zhang, Sergey Vitkalov, A. K. Kalagin and A. K. Bakarov,
“Zero-Differential Resistance State of Two-Dimensional Electron Systems in Strong
Magnetic Fields,” Phys. Rev. Lett., vol. 99, pp. 116801, 2007.
[23] A. T. Hatke, H. -S. Chiang, M. A. Zudov, L. N. Pfeiffer and K. W. West, “Zero
differential resistance in two-dimensional electron systems at large filling
factors,“ Phys. Rev. B, vol. 82, pp. 041304(R), 2010.
[24] F. S. Bergeret, B. Huckestein and A. F. Volkov, “Current-voltage characteristics
and the zero-resistance state in a two-dimensional electron gas,” Phys. Rev. B, vol. 67,
73
pp. 241303(R), 2003.
[25] A. V. Andreev, I. L. Aleiner and A. J. Millis, “Dynamical Symmetry Breaking as
the Origin of the Zero-de-Resistance State in an ac-Driven System,” Phys. Rev. Lett.,
vol 91, pp. 056803, 2003.
[26] Jing Qiao Zhang, Sergey Vitkalov and A. A. Bykov, “Nonlinear resistance of
two-dimensional electrons in crossed electric and magnetic fields,” Phys. Rev. B, vol.
80, pp. 045310, 2009.
[27] Adam C. Durst, Subir Sachdev, N. Read and S. M. Girvin, “Radiation-Induced
Magnetoresistance Oscillations in a 2D Electron Gas,” Phys. Rev. Lett., vol. 91, pp.
086803, 2003.
[28] G. Nachtwei, “Breakdown of the quantum Hall effect,” Physica E, vol. 4, pp. 79,
1999.
[29] S. M. Sze, “Physics of Semiconductor Devices,” John Wiley & Sons, sec. 11.2.1,
pp. 638, 1981
[30] B. K. Ridley and R. G. Pratt, “A Bulk Differential Negative Resistance Due to
Electron Tunneling through an Impurity Potential Barrier,” Phys. Lett., vol. 4, pp. 300,
1963.
[31] Junren Shi and X. C. Xie, “Radiation-Induced “Zero-Resistance State” and the
Photon-Assisted Transport,” Phys. Rev. Lett., vol. 91, pp. 086801, 2003.
[32] A. Kunold and M. Torres, “Nonlinear transport theory for negative-differential
resistance states of two-dimensional electron systems in strong magnetic fields,” Phys.
Rev. B, vol. 80, pp. 205314, 2009.
[33] R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann, “Electron mobilities
in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett.,
vol. 33, pp. 665, 1978.
[34] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 1.1, pp. 7, 1995.
[35] A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A, vol. 43, pp. 3161,
1991.
[36] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
University Press, sec. 9.1, pp. 329, 1998.
[37] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 1.6, pp. 32, 1995.
74
[38] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
University Press, sec. 6.4.1, pp. 219, 1998.
[39] B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and
the existence of extended states in a two-dimensional disordered potential,” Phys. Rev.
B, vol. 25, pp. 2185, 1982.
[40] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 1.6, pp. 35, 1995.
[41] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
University Press, sec. 6.5, pp. 233, 1998.
[42] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
University Press, sec. 6.4.4, pp. 223, 1998.
[43] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 1.5, pp. 26, 1995.
[44] R. G. Mani and J. R. Anderson, “Study of the single-particle and transport
lifetimes in GaAs/AlxGa1-xAs,” Phys. Rev. B, vol. 37, pp. 4299, 1988.
[45] K. P. Martin, R. J. Higgins, J. J. L. Rascol, HyungMo Yoo and John R. Arthur,
“Quantum lifetime measurements of the two-dimensional electron gas at the inverted
AlGaAs/GaAs interface,” Surface Science, vol. 196, pp. 323, 1988.
[46] Scott Dietrich, Sergey Vitkalov, D. V. Dmitriev and A. A. Bykov, “Quantum
lifetime of two-dimensional electrons in a magnetic field,” Phys. Rev. B, vol. 85, pp.
115312, 2012.
[47] P. T. Coleridge, “Small-angle scattering in two-dimensional electron gases,” Phys.
Rev. B, vol. 44, pp. 3793, 1991.
[48] J J Harris, K J Lee, T Wang, S Sakai, Z Bougrioua, I Moerman, E J Thrush, J B
Webb, H Tang, T Martin, D K Maude and J-C Portal, “Relationship between classical
and quantum lifetimes in AlGaN/GaN heterostructures,” Semicond. Sci. Technol., vol.
16, pp. 402, 2001.
[49] K. v. Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy
Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,”
Phys. Rev. Lett., vol. 45, pp. 494, 1980.
[50] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
University Press, sec. 6.6, pp. 239, 1998.
[51] M. Buttiker, “Absence of backscattering in the quantum Hall effect in multiprobe
75
conductors,” Phys. Rev. B, vol. 38, pp. 9375, 1988.
[52] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 4.1, pp. 179, 1995.
[53] R. Landauer, “Spatial Variation of Currents and Fields Due to Localized
Scatterers in Metallic Conduction,” IBM J. Res. Dev., vol. 1, pp. 223, 1957.
[54] M. Buttiker, “Symmetry of electrical conduction,” IBM J. Res. Dev., vol. 32, pp.
317, 1988.
[55] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
University Press, sec. 4.1, pp. 182, 1995.
[56] M. Heiblum, M. I. Nathan and C. A. Chang, “CHARACTERISTICS OF AuGeNi
OHMIC CONTACTS TO GaAs,” Solid-State Electronics, vol. 25, pp. 185, 1982.
[57] Anthony Kent, “Experimental Low-Temperature Physics,” The Macmillan Press
LTD, sec. 4.4, pp. 94, 1993.
[ 58 ] A. Vl. Gurevich and R. G. Mints, “Self-heating in normal metals and
superconductors,” Rev. Mod. Phys., vol. 59, pp. 941, 1987.
[59] M. E. Cage, R. F. Dziuba, B. F. Field, E. R. Williams, S. M. Girvin, A. C.
Gossard, D. C. Tsui and R. J. Wagner, “Dissipation and Dynamic Nonlinear Behavior
in the Quantum Hall Regime,” Phys. Rev. Lett., vol. 51, pp. 1374, 1983.
[60] S. Komiyama, T. Takamasu, S. Hiyamizu and S. Sasa, “BREAKDOWN OF THE
QUANTUM HALL EFFECT DUE TO ELECTRON HEATING,” Solid State
Commun., vol. 54, pp. 479, 1985.
[61] O. Heinonen, P. L. Taylor and S. M. Girvin, “Electron-phonon interactions and
the breakdown of the dissipationless quantum Hall effect,” Phys. Rev. B, vol. 30, pp.
3016, 1984.
[62] M. P. Chaubey and M. Singh, “Landau-level broadening due to electron-phonon
interaction in multiple-quantum-well structures,” Phys. Rev. B, vol. 34, pp. 2385,
1986.
[63] Jing-qiao Zhang, Sergey Vikalov, A. A. Bykov, A. K. Kalagin and A. K. Bakarov,
“Effect of a dc electric field on the longitudinal resistance of two-dimensional
electrons in a magnetic field,” Phys. Rev. B, vol. 75, pp. 081305, 2007.
[64] K. C. Kao, “Negative Differential Resistance Produced by Joule Heating in
Semiconductors,” IEEE Trans. Electron Devices, vol. 17, pp. 562, 1970.
[65] T. Nakajima and S. Komiyama, “Lifetime of dissipation-less state of quantum
76
Hall electron systems in the bistable regime,” Physica E, vol. 42, pp. 1026, 2010.
[66] I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin and D. G. Polyakov,
“Theory of microwave-induced oscillations in the magnetoconductivity of a
two-dimensional electron gas,” Phys. Rev. B, vol. 71, pp. 115316, 2005.
[67] W. Zhang, M. A. Zudov, L. N. Pfeiffer and K. W. West, “Resonant Phonon
Scattering in Quantum Hall Systems Driven by dc Electric fields,“ Phys. Rev. Lett.,
vol. 100, pp. 036805, 2008.
[68] T. Ando, A. B. Fowler and F. Stern, “Electronic properties of two-dimensional
systems,” Rev. Mod. Phys., vol. 54, pp. 437, 1982.