簡易檢索 / 詳目顯示

研究生: 李清平
Lee, Ching-Ping
論文名稱: 二維電子氣系統在強磁場下電性非平衡現象之研究
Electric instability in a two-dimensional electron gas system under high magnetic fields
指導教授: 陳正中
Chen, Jeng-Chung
口試委員: 林大欽
許世英
洪在明
許耀銓
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 二維電子氣電性不穩性負微分電阻
外文關鍵詞: two-dimensional electron gas, electric instability, negative differential resistance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此份論文研究砷化鎵/砷化鎵鋁異質結構二維電子氣在強磁場下的電性不穩定行為。當外加直流電流超過臨界電流後,二維電子氣的縱向電位會突然下降、擾動,表現出電性不穩定的行為。此現象只出現在蘭道能級是完全分開的情況下、其填充系數小於2,且晶格溫度相對高溫的環境下。我們發現臨界電流會隨著磁場增加而增加,也會隨著晶格溫度增加而增加。然而,相對的,電性不穩定的行為是隨著磁場增加而增加,卻隨著溫度增加而減小。
    電性不穩定的發生可以由兩個現象學理論來解釋,其一是Andreev等人[25]所發表的理論,其二是Kurosawa等人[1]所發表的理論。數據分析的結果顯示縱向電阻會隨著外加電流增加而下降,且當加外電流增加至臨界電流時,會有負微分電阻的產生,負微分電阻被認為是電性不穩定的前兆。電性不穩定是由於負微分電阻的存在,造成材料內部有電荷域的生成。縱向電阻率隨著外加電流的下降可以被歸因於電子能量分部的改變以及電子在蘭道能級之間的跳躍。


    We present a study of electric instability in GaAs/AlGaAs hetero-structure two-dimensional electron gas system under high magnetic fields. As the applied dc current exceeds a threshold value Ith, the longitudinal voltage Vxx drops, fluctuates and exhibits electric instability. The observed instability occurs only in well-separated low-lying Landau levels with a filling factor ν ≦ 2 at relatively high lattice temperatures. We find that Ith increases with increasing magnetic field B and the lattice temperature TL. In contrast, electric instability becomes more pronounced at higher B, but gradually diminishes with increasing TL.
    The onset of electric instability has been predicted by two phenomenological theories, one is the theory of Andreev et al. [25], and the other is the theory of Kurosawa et al. [ 1]. Data analysis suggests that longitudinal resistance Rxx is suppressed by increasing I and exhibits negative differential resistivity (NDR) when I = Ith, where NDR is viewed as a precursor signal of electric instability. The electric instability is caused by domain growth. The electric instability is actuated by the suppression of Rxx with increasing I, which can be understood in terms of the capability of the spectral diffusion of electrons and electron transfer to higher levels via inelastic inter-Landau levels scattering within the limit of one-occupied Landau level.

    Abstract i Acknowledgements ii 1 Introduction 1 1.1 Historical background and recent developments 1 1.2 Motivation 5 1.3 Outline 7 2 Background Knowledge 8 2.1 Electric instability caused by domain growth without magnetic field 8 2.2 Electric instability under magnetic field 10 2.2.1 The theory of Andreev et al. 10 2.2.2 The theory of Kurosawa et al.: instability criterion 12 2.2.3 The theory of Kurosawa et al.: direction of the domain growth 15 3 Experimental Material and Methods 17 3.1 Two-dimensional electron gas system (2DEGs) 17 3.1.1 Structure and basic properties 17 3.1.2 Landau Levels 20 3.1.3 Shubnikov-de Hass Effect 24 3.1.4 quantum Hall Effect 26 3.2 Device fabrication 29 3.2.1 Photolithography and wet etching 29 3.2.2 Ohmic contact fabrication 31 3.3 Cryostat system and electronic measurement 33 3.3.1 Cryostat system 33 3.3.2 Electric measurement setup 33 4 Electric Instability in a 2DEGs 36 4.1 Introduction 36 4.2 Experimental results and analysis 37 4.2.1 Voltage - current relationship and electric instability 37 4.2.2 Analysis of electric instability through theory of Andreev et al. 43 5 Analysis of the Electric Instability through Theory of Kurosawa et al. 45 5.1 The theory of Kurosawa et al. in isotropic 2DEGs with magnetic field 45 5.1.1 Instability criterion 45 5.1.2 Direction of the domain growth 47 5.2 Analysis 48 5.2.1 Electric instability in well-separated Landau level regime 48 5.2.2 Direction of domain growth 56 5.2.3 Electric instability in overlapped Landau level regime 58 6 Mechanism for electric instability 65 7 Conclusions 69 Bibliography 71

    [1] Tatsumi KUROSAWA, Hajime MAEDA and Hidehiko SUGIMOTO, “Hot Carrier
    Instability in a Magnetic Field,” J. Phys. Soc. Japan, vol. 36, no. 2, pp. 491, 1974.
    [2] B. K. Ridley, “Specific Negative Resistance in Solids,” Proc. Phys. Soc., vol. 82,
    pp. 954, 1963.
    [3] J. B. Gunn, “Microwave Oscillation of Current in III-V Semiconductors,” Solid
    State Commun., vol. 1, no. 4, pp. 88, 1963.
    [4] J. B. Gunn, “Instabilities of Current in III-V Semiconductors,” IBM J. Res. Dev.,
    vol. 8, pp. 141, 1964.
    [5] A. R. Hutson, A. Jayaraman, A. G. Chynoweth, A. S. Coriell and W. L. Feldmann,
    “Mechanism of the Gunn Effect from a Pressure Experiment,” phys. Rev. Lett., vol. 14,
    pp. 639, 1965.
    [6] J. W. Allen, M. Shyam, Y. S. Chen and G. L. Pearson, “Microwave Oscillations in
    GaAs1-xPx,” Appl. Phys. Lett., vol. 7, pp. 78, 1965.
    [7] K. W. Boer and P. Voss, “Stationary Anode-Adjacent High-Field Domains in
    Cadmium Sulfide,” Phys. Stat. Sol., vol. 28, pp. 355, 1968
    [8] Esther M. Conwell, “Negative Differential Conductivity,” Physics Today, vol. 23,
    pp. 35, 1970.
    [9] R. F. Kazarinov and V. G. Skobov, “Theory of Electrical Conductivity of Ionic
    Semiconductors in Strong Electric and Magnetic Fields,” Sov. Phys. JETP, vol. 17, pp.
    921, 1963.
    [10] F. G. Bass, “Nonlinear Galvanomagnetic Effects, Negative Resistance Regions of
    Current - Voltage Characteristics, and Runaway Electrons,” Sov. Phys. JETP, vol. 21,
    pp. 181, 1965.
    [ 11 ] Kiichi F. Komatsubara, “Effect of Electric Field on the Transverse
    Magnetoresistance in n-Indium Antimonide at 1.5 K, ” Phys. Rev. Lett., vol. 16, pp.
    1044, 1966.
    [12] V. N. Bogomolov, S. G. Shul’man, A. G. Aronov and G. E. Pikus, “Obtaining a
    Falling Voltage - Current Characteristic in Semiconductors in Crossed Electric and
    Magnetic Fields by Short Circuiting the Transverse Hall Field,” JETP Lett., vol. 5, pp.
    169, 1967.
    [13] M. E. Levinshtein, T. V. Lvova, D. N. Nasledov and M. S. Shur, “Magnetic Field
    72
    Influence on the Gunn Effect (II),” Phys. Stat. Sol. (a), vol. 1, pp. 177, 1970.
    [14] A. Neumann, “Slow domains in semi-insulating GaAs,” J. Appl. Phys., vol. 90,
    pp. 1, 2001.
    [15] A. Patane, A. Ignatov, D. Fowler, O. Makarovsky and L. Eaves, “Hot-electrons
    and negative differential conductance in GaAs1-xNx,” Phys. Rev. B, vol. 72, pp.
    033312, 2005.
    [16] I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov and M. A. Zudov, “Nonequilibrium
    phenomena in high Landau levels,” Rev. Mod. Phys., vol. 84, pp. 1709, 2012.
    [17] M. A. Zudov, R. R. Du, J. A. Simmons and J. L. Reno, “Shubnikov-de Haas-like
    oscillations in millimeterwave photoconductivity in a high-mobility two-dimensional
    electron gas,” Phys. Rev. B, vol. 64, pp. 201311(R), 2001.
    [18] Ramesh G. Mani, Jurgen H. Smet, Klaus von Klitzing, Venkatesh Narayanamurti,
    William B. Johnson and Vladimir Umansky, “Zero-resistance states induced by
    electromagnetic-wave excitation in GaAs/AlGaAs heterostructures,“ Nature (London),
    vol. 420, pp. 646, 2002.
    [19] M. A. Zudov, R. R. Du, L. N. Pfeiffer and K. W. West, “Evidence for a New
    Dissipationless Effect in 2D Electronic Transport,“ Phys. Rev. Lett., vol. 90, pp.
    046807, 2003.
    [20] C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons and J. L. Reno, “Zener Tunneling
    Between Landau Orbits in a High-Mobility Two-Dimensional Electron Gas,“ Phys.
    Rev. Lett., vol. 89, pp. 076801, 2002.
    [21] A. A. Bykov, Jing-qiao Zhang, Sergey Vitkalov, A. K. Kalagin and A. K. Bakarov,
    “Effect of dc and ac excitations on the longitudinal resistance of a two-dimensional
    electron gas in highly doped GaAs quantum wells,” Phys. Rev. B, vol. 72, pp. 245307,
    2005.
    [22] A. A. Bykov, Jing-qiao Zhang, Sergey Vitkalov, A. K. Kalagin and A. K. Bakarov,
    “Zero-Differential Resistance State of Two-Dimensional Electron Systems in Strong
    Magnetic Fields,” Phys. Rev. Lett., vol. 99, pp. 116801, 2007.
    [23] A. T. Hatke, H. -S. Chiang, M. A. Zudov, L. N. Pfeiffer and K. W. West, “Zero
    differential resistance in two-dimensional electron systems at large filling
    factors,“ Phys. Rev. B, vol. 82, pp. 041304(R), 2010.
    [24] F. S. Bergeret, B. Huckestein and A. F. Volkov, “Current-voltage characteristics
    and the zero-resistance state in a two-dimensional electron gas,” Phys. Rev. B, vol. 67,
    73
    pp. 241303(R), 2003.
    [25] A. V. Andreev, I. L. Aleiner and A. J. Millis, “Dynamical Symmetry Breaking as
    the Origin of the Zero-de-Resistance State in an ac-Driven System,” Phys. Rev. Lett.,
    vol 91, pp. 056803, 2003.
    [26] Jing Qiao Zhang, Sergey Vitkalov and A. A. Bykov, “Nonlinear resistance of
    two-dimensional electrons in crossed electric and magnetic fields,” Phys. Rev. B, vol.
    80, pp. 045310, 2009.
    [27] Adam C. Durst, Subir Sachdev, N. Read and S. M. Girvin, “Radiation-Induced
    Magnetoresistance Oscillations in a 2D Electron Gas,” Phys. Rev. Lett., vol. 91, pp.
    086803, 2003.
    [28] G. Nachtwei, “Breakdown of the quantum Hall effect,” Physica E, vol. 4, pp. 79,
    1999.
    [29] S. M. Sze, “Physics of Semiconductor Devices,” John Wiley & Sons, sec. 11.2.1,
    pp. 638, 1981
    [30] B. K. Ridley and R. G. Pratt, “A Bulk Differential Negative Resistance Due to
    Electron Tunneling through an Impurity Potential Barrier,” Phys. Lett., vol. 4, pp. 300,
    1963.
    [31] Junren Shi and X. C. Xie, “Radiation-Induced “Zero-Resistance State” and the
    Photon-Assisted Transport,” Phys. Rev. Lett., vol. 91, pp. 086801, 2003.
    [32] A. Kunold and M. Torres, “Nonlinear transport theory for negative-differential
    resistance states of two-dimensional electron systems in strong magnetic fields,” Phys.
    Rev. B, vol. 80, pp. 205314, 2009.
    [33] R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann, “Electron mobilities
    in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett.,
    vol. 33, pp. 665, 1978.
    [34] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 1.1, pp. 7, 1995.
    [35] A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A, vol. 43, pp. 3161,
    1991.
    [36] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
    University Press, sec. 9.1, pp. 329, 1998.
    [37] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 1.6, pp. 32, 1995.
    74
    [38] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
    University Press, sec. 6.4.1, pp. 219, 1998.
    [39] B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and
    the existence of extended states in a two-dimensional disordered potential,” Phys. Rev.
    B, vol. 25, pp. 2185, 1982.
    [40] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 1.6, pp. 35, 1995.
    [41] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
    University Press, sec. 6.5, pp. 233, 1998.
    [42] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
    University Press, sec. 6.4.4, pp. 223, 1998.
    [43] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 1.5, pp. 26, 1995.
    [44] R. G. Mani and J. R. Anderson, “Study of the single-particle and transport
    lifetimes in GaAs/AlxGa1-xAs,” Phys. Rev. B, vol. 37, pp. 4299, 1988.
    [45] K. P. Martin, R. J. Higgins, J. J. L. Rascol, HyungMo Yoo and John R. Arthur,
    “Quantum lifetime measurements of the two-dimensional electron gas at the inverted
    AlGaAs/GaAs interface,” Surface Science, vol. 196, pp. 323, 1988.
    [46] Scott Dietrich, Sergey Vitkalov, D. V. Dmitriev and A. A. Bykov, “Quantum
    lifetime of two-dimensional electrons in a magnetic field,” Phys. Rev. B, vol. 85, pp.
    115312, 2012.
    [47] P. T. Coleridge, “Small-angle scattering in two-dimensional electron gases,” Phys.
    Rev. B, vol. 44, pp. 3793, 1991.
    [48] J J Harris, K J Lee, T Wang, S Sakai, Z Bougrioua, I Moerman, E J Thrush, J B
    Webb, H Tang, T Martin, D K Maude and J-C Portal, “Relationship between classical
    and quantum lifetimes in AlGaN/GaN heterostructures,” Semicond. Sci. Technol., vol.
    16, pp. 402, 2001.
    [49] K. v. Klitzing, G. Dorda and M. Pepper, “New Method for High-Accuracy
    Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,”
    Phys. Rev. Lett., vol. 45, pp. 494, 1980.
    [50] John H. Davies, “The Physics of Low-Dimensional Semiconductors,” Cambridge
    University Press, sec. 6.6, pp. 239, 1998.
    [51] M. Buttiker, “Absence of backscattering in the quantum Hall effect in multiprobe
    75
    conductors,” Phys. Rev. B, vol. 38, pp. 9375, 1988.
    [52] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 4.1, pp. 179, 1995.
    [53] R. Landauer, “Spatial Variation of Currents and Fields Due to Localized
    Scatterers in Metallic Conduction,” IBM J. Res. Dev., vol. 1, pp. 223, 1957.
    [54] M. Buttiker, “Symmetry of electrical conduction,” IBM J. Res. Dev., vol. 32, pp.
    317, 1988.
    [55] Supriyo Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge
    University Press, sec. 4.1, pp. 182, 1995.
    [56] M. Heiblum, M. I. Nathan and C. A. Chang, “CHARACTERISTICS OF AuGeNi
    OHMIC CONTACTS TO GaAs,” Solid-State Electronics, vol. 25, pp. 185, 1982.
    [57] Anthony Kent, “Experimental Low-Temperature Physics,” The Macmillan Press
    LTD, sec. 4.4, pp. 94, 1993.
    [ 58 ] A. Vl. Gurevich and R. G. Mints, “Self-heating in normal metals and
    superconductors,” Rev. Mod. Phys., vol. 59, pp. 941, 1987.
    [59] M. E. Cage, R. F. Dziuba, B. F. Field, E. R. Williams, S. M. Girvin, A. C.
    Gossard, D. C. Tsui and R. J. Wagner, “Dissipation and Dynamic Nonlinear Behavior
    in the Quantum Hall Regime,” Phys. Rev. Lett., vol. 51, pp. 1374, 1983.
    [60] S. Komiyama, T. Takamasu, S. Hiyamizu and S. Sasa, “BREAKDOWN OF THE
    QUANTUM HALL EFFECT DUE TO ELECTRON HEATING,” Solid State
    Commun., vol. 54, pp. 479, 1985.
    [61] O. Heinonen, P. L. Taylor and S. M. Girvin, “Electron-phonon interactions and
    the breakdown of the dissipationless quantum Hall effect,” Phys. Rev. B, vol. 30, pp.
    3016, 1984.
    [62] M. P. Chaubey and M. Singh, “Landau-level broadening due to electron-phonon
    interaction in multiple-quantum-well structures,” Phys. Rev. B, vol. 34, pp. 2385,
    1986.
    [63] Jing-qiao Zhang, Sergey Vikalov, A. A. Bykov, A. K. Kalagin and A. K. Bakarov,
    “Effect of a dc electric field on the longitudinal resistance of two-dimensional
    electrons in a magnetic field,” Phys. Rev. B, vol. 75, pp. 081305, 2007.
    [64] K. C. Kao, “Negative Differential Resistance Produced by Joule Heating in
    Semiconductors,” IEEE Trans. Electron Devices, vol. 17, pp. 562, 1970.
    [65] T. Nakajima and S. Komiyama, “Lifetime of dissipation-less state of quantum
    76
    Hall electron systems in the bistable regime,” Physica E, vol. 42, pp. 1026, 2010.
    [66] I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin and D. G. Polyakov,
    “Theory of microwave-induced oscillations in the magnetoconductivity of a
    two-dimensional electron gas,” Phys. Rev. B, vol. 71, pp. 115316, 2005.
    [67] W. Zhang, M. A. Zudov, L. N. Pfeiffer and K. W. West, “Resonant Phonon
    Scattering in Quantum Hall Systems Driven by dc Electric fields,“ Phys. Rev. Lett.,
    vol. 100, pp. 036805, 2008.
    [68] T. Ando, A. B. Fowler and F. Stern, “Electronic properties of two-dimensional
    systems,” Rev. Mod. Phys., vol. 54, pp. 437, 1982.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE