簡易檢索 / 詳目顯示

研究生: 高義程
Kao, Yi-Cheng
論文名稱: 石墨烯/四氧化三鐵多層複合結構在高效能鋰離子電池陽極上之應用
Graphene/Fe3O4 Hierarchical Sandwich Structure as Anode for High Performance Lithium-Ion Batteries
指導教授: 闕郁倫
Chueh, Yu-Lun
謝光前
Hsieh, Kuang-Chien
周立人
Chou, Li-Jen
口試委員: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
段興宇
Tuan, Hsing-Yu
闕郁倫
Chueh, Yu-Lun
謝光前
Hsieh, Kuang-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 61
中文關鍵詞: 石墨烯四氧化三鐵鋰離子電池
外文關鍵詞: Graphene, Iron Oxide, Lithium-ion battery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著消費性電子產品的快速發展,鋰離子二次電池的需求量也越來越大。雖然鋰電池的研究已經持續了超過40年,但鋰電池仍然存在著一些問題,其中最大的問題在於電池的可靠度以及電池容量。目前,各界的研究團隊們主要專注於開發更高容量、循環壽命更長以及更安全、穩定的材料。
    本研究中,使用石墨烯/四氧化三鐵多層複合結構來做為鋰電池的負極。由於四氧化三鐵擁有許多良好的特性,例如高比容量、價格低廉、含量豐富、無毒、安全性高以及對環境無害等特性,所以此結構可望用來改良目前商業化電池所使用的石墨負極。本研究使用熱分解法來合成四氧化三鐵奈米顆粒,並進一步利用TEM、XRD及FT-IR等技術來分析所合成的奈米顆粒。接著,將四氧化三鐵奈米顆粒與石墨烯混合,製作成多層複合結構,最後再以爐管於300℃進行熱處理。在分析的部分,利用SEM、TEM來觀察複合結構的表面形貌,並使用XRD鑑定其結構,最後再透過FT-IR的分析,來確定四氧化三鐵奈米顆粒表面的油酸是否已經由300℃熱處理而除去。此外,由四點探針的電性量測結果可知,電子確實如同預期般藉由石墨烯來傳導。
    為了進一步瞭解此結構的電化學性質,我們在手套箱中將此多層複合結構進行半電池組裝,並藉由定電流量測法以0.1 C的充放電速率對所組裝完成的電池作量測。由得到的充放電曲線可知,四氧化三鐵的特徵電壓平台確實出現在此曲線中,但與已發表的文獻相比較,電容量值偏低。若能進一步調整四氧化三鐵與石墨烯的比例,將四氧化三鐵層的厚度降低,可望改善此現象,並得到較好的電池特性。


    The demand for lithium-ion batteries is ascending in the past few years due to the fast growth of a variety of consumer electronics. Although the study of rechargeable lithium batteries has been conducted for more than 40 years, some problems still remain, including reliability of electrodes and capacity of batteries. Therefore, materials with high specific capacity, long cycle life, and good safety are still widely investigated now.
    In this study, graphene/Fe3O4 sandwich structure was introduced as the anode of lithium-ion batteries and it has the potential to replace graphite, which is used as the anode in commercial lithium-ion batteries, due to the charming features of Fe3O4, such as high specific capacity, low cost, abundant in earth, nontoxicity, good safety, and eco-friendly property. We synthesized Fe3O4 nanoparticles by thermal decomposition method. The as-prepared nanoparticles were examined and analyzed by TEM, XRD and FT-IR. The Fe3O4 nanoparticles were further mixed with CVD graphene to form graphene/Fe3O4 sandwich structure, followed by annealed at 300℃ in Ar atmosphere in a furnace tube. The morphology and phase of graphene/Fe3O4 sandwich structure were observed and investigated by SEM, TEM, and XRD. FT-IR was also used to confirm the absence of oleic acid after annealing. The results of four probe measurement show that the electrons are transported by graphene in the sandwich structure, which is the same as expectation.
    In order to know the electrochemical properties of graphene/Fe3O4 sandwich structure, coin-type half cells (CR2032) were assembled with the as-prepared graphene/Fe3O4 sandwich structure as the anode in an argon-filled glove box, followed by measured via galvanostatic cycling at 0.1 C rate. The characteristic voltage plateaus of Fe3O4 were appeared in the charge/discharge profiles, but the capacity of graphene/Fe3O4 sandwich structure in this work is lower than the reported data. It is expected that the performance will be further improved if the ratio of Fe3O4 nanoparticles and graphene is adjusted.

    Abstract I 摘要 III 誌謝 IV Contents V Figure Caption VII Table Caption X Chapter 1 Introduction 1 1-1. Introduction to lithium-ion batteries 1 1-2. Nanomaterials 4 1-3. Fe3O4 (Magnetite) 7 1-3-1. Introduction to Fe3O4 7 1-3-2. Synthesis of Fe3O4 nanoparticles 11 1-4. Graphene 13 1-4-1. Introduction to graphene 13 1-4-2. Synthesis of graphene 13 1-5. Motivation and research direction 17 Chapter 2 Experimental Procedures 18 2-1. Preparation of graphene/Fe3O4 sandwich structure 19 2-1-1. CVD graphene 19 2-1-2. Fe3O4 nanoparticles 21 2-1-3. Graphene/Fe3O4 sandwich structure 23 2-2. Analysis 24 2-2-1. SEM (Scanning electron microscopy) 24 2-2-2. TEM (Transmission electron microscopy) 24 2-2-3. XRD (X-ray diffraction) 25 2-2-4. FT-IR (Fourier transform infrared spectroscopy) 25 2-2-5. Electrical measurement 26 2-2-6. Battery test 26 Chapter 3 Results and Discussion 29 3-1. Fe3O4 nanoparticles 29 3-1-1. XRD analysis 29 3-1-2. TEM analysis 32 3-1-3. FT-IR analysis 34 3-2. Graphene/Fe3O4 sandwich structure 36 3-2-1. SEM analysis 36 3-2-2. TEM analysis 38 3-2-3. XRD analysis 40 3-2-4. FT-IR analysis 42 3-2-5. Electrical measurement 44 3-2-6. Battery test 46 Chapter 4 Summary and Conclusions 50 References 52

    [1] A. Robert Armstrong and Peter G. Bruce
    “Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries”
    Nature (1996), 381, 499-500
    [2] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon and S. Colson
    “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”
    J. Electrochem. Soc. (1991), 138, 2859-2864
    [3] Jan N. Reimers and J. R. Dahn
    “Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2”
    J. Electrochem. Soc. (1992), 139, 2091-2097
    [4] Kazunori Ozawa
    “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system”
    Solid State Ionics (1994), 69, 212-221
    [5] J. R. Dahn, U. von Sacken, M. W. Juzkow and H. Al-Janaby
    “Rechargeable LiNiO2/Carbon Cells”
    J. Electrochem. Soc. (1991), 138, 2207-2211
    [6] J. R. Dahn, Tao Zheng, Yinghu Liu and J. S. Xue
    “Mechanisms for Lithium Insertion in Carbonaceous Materials”
    Science (1995), 270, 590-593

    [7] Martin Winter, Jürgen O. Besenhard, Michael E. Spahr and Petr Novák
    “Insertion Electrode Materials for Rechargeable Lithium Batteries”
    Adv. Mater. (1998), 10, 725-763
    [8] Yeon-Bok Jeong and Dong-Won Kim
    “Cycling performances of Li/LiCoO2 cell with polymer-coated separator”
    Electrochim. Acta (2004), 50, 323–326
    [9] M.Y. Jeon and C.K. Kim
    “Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure”
    J. Membr. Sci. (2007), 300, 172–181
    [10] A. P. Alivisatos
    “Semiconductor Clusters, Nanocrystals, and Quantum Dots”
    Science (1996), 271, 933 - 937
    [11] Yi-Jen Wu, Chin-Hua Hsieh, Po-Ham Chen, Jing-Yang Li, Li-Jen Chou and Lih-Juann Chen
    “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires”
    ACS Nano (2010), 4, 1393-1398
    [12] Minbaek Lee, Chih-Yen Chen, Sihong Wang, Seung Nam Cha, Yong Jun Park, Jong Min Kim, Li-Jen Chou, and Zhong Lin Wang
    “A Hybrid Piezoelectric Structure for Wearable Nanogenerators”
    Adv. Mater. (2012), 24, 1759-1764

    [13] Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly and Rodney S. Ruoff
    “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”
    Science (2000), 287, 637-640
    [14] Walt A. de Heer, A. Chatelain, D. Ugarte
    “A Carbon Nanotube Field-Emission Electron Source”
    Science (1995), 270, 1179-1180
    [15] J. W. Kang, D. H. Kim, V. Mathew, J. S. Lim, J. H. Gim, and J. Kim
    “Particle Size Effect of Anatase TiO2 Nanocrystals for Lithium-Ion Batteries”
    J. Electrochem. Soc. (2011), 158, A59-A62
    [16] Shantanu K. Behera
    “Facile synthesis and electrochemical properties of Fe3O4 nanoparticles for Li ion battery anode”
    J. Power Sources (2011), 196, 8669-8674
    [17] Igor Kovalenko, Bogdan Zdyrko, Alexandre Magasinski, Benjamin Hertzberg, Zoran Milicev, Ruslan Burtovyy, Igor Luzinov, Gleb Yushin
    “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries”
    Science (2011), 334, 75-79
    [18] Shu Luo, Ke Wang, Jiaping Wang, Kaili Jiang, Qunqing Li, and Shoushan Fan
    “Binder-Free LiCoO2/Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries”
    Adv. Mater. (2012), 24, 2294–2298

    [19] Jamie Gomez, Egwu E. Kalu, Ruben Nelson, Charlemagne Akpovo, Mark H. Weatherspoon, and Jim P. Zheng
    “Binder-Free Electrode Fabrication by Electroless-Electrolytic Method”
    ECS Electrochemistry Letters (2012), 1, D25-D28
    [20] L. Fransson, T. Eriksson, K. Edstrӧm, T. Gustafsson, J. O. Thomas
    “Influence of carbon black and binder on Li-ion batteries”
    J. Power Sources (2001), 101, 1-9
    [21] S. S. Zhang, T. R. Jow
    “Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries”
    J. Power Sources (2002), 109, 422-426
    [22] Meng-Yuan Li, Yan Wang, Chun-Ling Liu, Hao Gao, Wen-Sheng Dong
    “Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability”
    Electrochim. Acta (2012), 67, 187-193
    [23] An-Hui Lu, E. L. Salabas, and Ferdi Schűth
    “Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application”
    Angew. Chem. Int. Ed. (2007), 46, 1222–1244
    [24] Ajay Kumar Gupta, Mona Gupta
    “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications”
    Biomaterials (2005), 26, 3995–4021
    [25] Zhen Li, Li Wei, Mingyuan Gao and Hao Lei
    “One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles”
    Adv. Mater. (2005), 17, 1001-1005
    [26] Min Yu, Jane Howe, Kyunghoon Jeong, Inbo Shim, Woochul Kim, Chulsung Kim, Jaepyoung Ahn, Jaegab Lee and Marek W. Urban
    “Structural and morphological features of concentric iron oxide/carbon nanotubes obtained from phospholipids”
    J. Mater. Chem. (2010), 20, 5748–5755
    [27] Kyo-Chang Choi, Eun-Kyoung Lee, and Sei-Young Choi
    “Electrical and Physical Characterization of Fe3O4-impregnated Elastomeric Composites”
    J. Ind. Eng. Chem. (2004), 10, 402-408
    [28] R. M. Cornell and U. Schwertmann
    “The iron oxides : structure, properties, reactions, occurrences, and uses”
    Wiley-VCH (2003)
    [29] Jiazheng Wang, Ning Du, Hao Wu, Hui Zhang, Jingxue Yu, Deren Yang
    “Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries”
    J. Power Sources (2013), 222, 32-37
    [30] Sungwook Ko, Jung-In Lee, Hee Seung Yang, Soojin Park, and Unyong Jeong
    “Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-Ion Battery Anodes”
    Adv. Mater. (2012), 24, 4451–4456
    [31] Koichi Ui, Soshi Kawamura, Naoaki Kumagai
    “Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method”
    Electrochim. Acta (2012), 76, 383-388

    [32] X.H. Huang, X.H. Xia, Y.F. Yuan, F. Zhou
    “Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries”
    Electrochim. Acta (2011), 56, 4960-4965
    [33] Yu-Guo Guo, Yong-Sheng Hu, Wilfried Sigle, and Joachim Maier
    “Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks”
    Adv. Mater. (2007), 19, 2087-2091
    [34] Young Soo Kang, Subhash Risbud, John F. Rabolt, and Pieter Stroeve
    “Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles”
    Chem. Mater. (1996), 8, 2209-2211
    [35] Jӧrg Rockenberger, Erik C. Scher, and A. Paul Alivisatos
    “A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides”
    J. Am. Chem. Soc. (1999), 121, 11595-11596
    [36] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li
    “Monodisperse MFe2O4(M = Fe, Co, Mn) Nanoparticles”
    J. Am. Chem. Soc. (2004), 126, 273-279
    [37] JongNam Park, KwangJin An, YoSun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, Nong-Moon Hwang and TaegHwan Hyeon
    “Ultra-large-scale syntheses of monodisperse nanocrystals”
    Nat. Mater. (2004), 3, 891-895

    [38] Frank schwierz
    “Graphene transistors”
    Nat. Nanotech. (2010), 5, 487-496
    [39] Martin Pumera
    “Graphene in biosensing”
    Mater. Today (2011), 14, 308-315
    [40] Bo Tang, Guoxin Hu, Hanyang Gao, Zixing Shi
    “Three-dimensional graphene network assisted high performance dye sensitized solar cells”
    J. Power Sources (2013), 234, 60-68
    [41] Martin Pumera
    “Graphene-based nanomaterials for energy storage”
    Energy Environ. Sci. (2011), 4, 668–674
    [42] Jun Liu, Yuhua Xue, Mei Zhang, and Liming Dai
    “Graphene-based materials for energy applications”
    MRS Bull. (2012), 37, 1265-1272
    [43] Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal
    “Graphene based materials: Past, present and future”
    Prog. Mater Sci. (2011), 56, 1178-1271
    [44] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov
    “Electric Field Effect in Atomically Thin Carbon Films”
    Science (2004), 306, 666-669

    [45] Goki Eda, Giovanni Fanchini and Manish Chhowalla
    “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”
    Nat. Nanotech. (2008), 3, 270-274
    [46] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong and Sumio Iijima
    “Roll-to-roll production of 30-inch graphene films for transparent electrodes”
    Nat. Nanotech. (2010), 5, 574-578
    [47] Xuesong Li, Weiwei Cai, Luigi Colombo, and Rodney S. Ruoff
    “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”
    Nano Lett. (2009), 9, 4268-4272
    [48] Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, and Jing Kong
    “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”
    Nano Lett. (2009), 9, 30-35
    [49] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo and Rodney S. Ruoff
    “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”
    Nano Lett. (2009), 9, 4359-4363

    [50] Ariel Ismach, Clara Druzgalski, Samuel Penwell, Adam Schwartzberg, Maxwell Zheng, Ali Javey, Jeffrey Bokor and Yuegang Zhang
    “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces”
    Nano Lett. (2010), 10, 1542–1548
    [51] Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu, Yi-Te Li, Keng-Ku Liu, Wenjing Zhang, Shi-Yen Lin, Zheng-Yu Juang, Yuan-Liang Zhong, Fu-Rong Chen and Lain-Jong Li
    “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”
    Nano Lett. (2011), 11, 3612 – 3616
    [52] Xuyang Wang, Xufeng Zhou, Ke Yao, Jiangang Zhang, Zhaoping Liu
    “A SnO2/graphene composite as a high stability electrode for lithium ion batteries”
    Carbon (2011), 49, 133-139
    [53] Hailiang Wang, Li-Feng Cui, Yuan Yang, Hernan Sanchez Casalongue, Joshua Tucker Robinson, Yongye Liang, Yi Cui, and Hongjie Dai
    “Mn3O4 - Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries”
    J. Am. Chem. Soc. (2010), 132, 13978–13980
    [54] Schroder, Dieter K.
    “Semiconductor material and device characterization”
    Wiley (2005)
    [55] Schrader, Bernhard.
    “Raman/Infrared Atlas of Organic Compounds”
    VCH, (1989)

    [56] Yang Wang, Lu Wang, Tian Tian, Xiaoya Hu, Chun Yang and Qin Xu
    “Automated solid-phase extraction hyphenated to voltammetry for the determination of quercetin using magnetic nanoparticles and sequential injection lab-on-valve approach”
    Analyst (2012), 137, 2400-2405
    [57] Hao Liu, Guoxiu Wang, Jiazhao Wang, David Wexler
    “Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries”
    Electrochem. Commun. (2008), 10, 1879-1882
    [58] Chunmei Ban, Zhuangchun Wu, Dane T. Gillaspie, Le Chen, Yanfa Yan, Jeffrey L. Blackburn, and Anne C. Dillon
    “Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode”
    Adv. Mater. (2010), 22, E145-E149
    [59] Fangyi Cheng, Jing Liang, Zhanliang Tao, and Jun Chen
    “Functional Materials for Rechargeable Batteries”
    Adv. Mater. (2011), 23, 1695-1715
    [60] Yong-Mao Lin, Paul R. Abel, Adam Heller, and C. Buddie Mullins
    “α- Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries”
    J. Phys. Chem. Lett. (2011), 2, 2885 - 2891
    [61] 藍弋丰 (2013/05/21)。
    〈【航太科技】機會號行駛里程已超越NASA地球以外記錄〉
    科技新報,航太科技版。
    [62] 林素琴 (2002, 07)。
    〈大好前景-鋰電池材料發展分析〉。
    工研院電子報,9810。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE