簡易檢索 / 詳目顯示

研究生: 吳秉修
Wu, Bing-Hsiu
論文名稱: 以3D堆疊多核心微處理器為例實行佈局後之熱點分析
Floorplan-Level Thermal Analysis for Multi-Core Microprocessor in 3D-Stacked IC
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 84
中文關鍵詞: 三維晶片熱分析
外文關鍵詞: 3D IC, Thermal Analysis
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,3D IC製程技術發展日趨成熟,用於解決傳統晶片效能和功率消耗的問題,由於導線層內的介質材料和晶片黏合材料使得3D IC散熱較傳統晶片來的不易。此外,晶圓薄化技術及熱堆疊效應使3D IC熱問題更為嚴重。高溫操作和高溫度梯度都將會使效能和晶片可靠度降低,因此在設計時就需考量3D IC內的熱效能。
    佈局後實行熱點分析可在設計早期時快速檢查3D IC的熱分布來避免熱點相互作用和熱堆疊的情況發生。因此,我們結合了分析法和數值方法以及利用邏輯閘層級(gate-level)功率評估方式實行暫態和穩態熱點分析。此外,我們使用經驗公式來評估導線層的熱傳導係數,這將比使用平均熱傳導係數來得精準。
    我們以3D-SIC的技術建立同質多核心微處理器架構並實行熱點分析。從模擬結果發現在3D IC內熱點不一定會發生在高功耗源的地方而是受到其他層的熱點影響,且晶圓薄化技術造成熱效能降低。導線層和黏合層內熱絕緣材料是造成3D IC散熱不易的主因,且厚度越高將使熱點面積和尖峰溫度提升,然而,TSV在黏合層可以明顯改善3D IC的熱效能。此外,我們發現未考慮導線和TSV的功耗在最上層晶片會有5.88K的峰值誤差,而使用平均熱傳導係數評估導線層會有最上層晶片1.8K的峰值誤差。


    3D integrated circuits can eliminate the effect by using intra-layer interconnects. However, thermal issue in 3D ICs becomes much more severe than in 2D ICs because thinned silicon substrate of each stacked die reduces the heat spreading effect and makes power density to increase due to heat stacking effect. Besides, the bonding material and the back-end-of-line dielectric are heat barriers to heat conduction. High temperature and temperature gradient will deteriorate the reliability and reduce the performance. Therefore, the thermal performance in 3D ICs needs to be considered in early design time and thermal analysis plays an important rule in the 3D IC design.
    Floorplan-level thermal analysis for 3D ICs can provide fast approximation for temperature distribution on each stacked die and provide indications for the thermal management to avoid inter-die hotspot interaction and heat stacking effect in early design time. In this work, we combined the analytical method and numerical method for floorplan-level thermal analysis and proposed a gate-level power evaluation method for both transient and steady-state thermal analysis. Furthermore, We used empirical function to evaluate the effective thermal conductivity of BEOL layers which is accurate than the average weighted thermal conductivity used in many researches.
    We constructed a homogeneous multi-core architecture by using OpenRISC IP cores in 3D-SIC as our thermal model for both transient and steady-state thermal simulation by HotSpot5.0. From the simulation results, we found that the hotspots can occur at the locations without high power sources and are influenced by the hotspots in other tiers. Wafer thinning technology worsens thermal performance in 3D ICs. Furthermore, BEOL layers and bonding layers with low-thermal-conductivity materials are heat barriers to heat conduction and induce larger hotspot footprint and higher peak temperature if with larger thickness. However, bonding layer with TSV insertion can improve thermal performance dramatically. The underestimation of the peak temperature in the top die is 5.88K if without taking BEOL and TSV power into account. Besides, we compared the average weighted thermal conductivity of BEOL layers to our method and caused 1.8K underestimation of the peak temperature in the top die because BEOL layers dominate the vertical temperature gradient.

    Abstract i 1 Introduction 1 1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contents of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Introduction of Current 3D Technologies and Overview The Previous Researches About Thermal Analysis for 3D ICs 7 2.1 Introduction of Current 3D Technologies . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Classification Based on Interconnect Hierarchy . . . . . . . . . . 7 2.1.2 Wafer Fabrication Process . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Stacking Approach and Bonding Method . . . . . . . . . . . . . 9 2.1.4 Stacking Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.5 Via Process and Via Material . . . . . . . . . . . . . . . . . . . . 10 2.1.6 The Applications in 3D Technology . . . . . . . . . . . . . . . . . . 11 2.2 Previous Researches for 3D IC Thermal Analysis . . . . . . . . . . . . . . . 12 2.2.1 Analytical Method for 3D IC Thermal Analysis . . . . . . . . . . . . 13 2.2.2 Numerical Method for 3D IC Thermal Analysis . . . . . . . . . . . . 14 2.2.3 Thermal Analysis for Cooling Mechanism in 3D ICs . . . . . . . . . 16 3 The Proposed Gate-Level Power Evaluation Method and Floorplan-Level Thermal Analysis Flow for 3D ICs 19 3.1 Floorplan-level Thermal Analysis Flow for The 3D ICs . . . . . . . . . . . . 19 3.1.1 Gate-level Power Extraction Flow for 3D IC Model . . . . . . . . . . 19 3.1.2 Thermal Analysis for 3D IC Model . . . . . . . . . . . . . . . . . . 21 3.2 Power Distribution Network and TSV Topology Modeling for 3D IC Design . 21 3.2.1 Power Distribution Network Modeling . . . . . . . . . . . . . . . . . 22 3.2.2 Through Silicon Via Topology Modeling . . . . . . . . . . . . . . . 22 3.2.3 Global-level Signal TSV Assignment in 3D-Stacked IC . . . . . . . . 25 3.3 Proposed Power Data Extraction Method in 3D IC Model . . . . . . . . . . . 26 3.3.1 Power Data Extraction for The Active Layers . . . . . . . . . . . . . 26 3.3.2 Power Data Extraction for Back-End-of-Line(BEOL) Layer . . . . . 26 3.3.3 Power Extraction for Through Silicon Vias in Thinned Substrate Layers 33 3.4 Effective Thermal Parameters Evaluation in 3D IC Thermal Model . . . . . . 36 3.4.1 Effective Thermal Parameter Evaluation for The Thinned Substrate Layers and The Bonding Layers . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Effective Thermal Parameter Evaluation for BEOL Layer . . . . . . . 40 4 Using Homogeneous Multi-core Architecture in 3D-SIC for Thermal Analysis 53 4.1 Introduction of OpenRISC 1200 Microprocessor . . . . . . . . . . . . . . . . 53 4.2 RTL-level and Gate-level Event-driven Simulation . . . . . . . . . . . . . . . 55 4.3 Homogeneous Multi-Core Architecture Based on OR1200 in 3D-Stacked IC(3DSIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.1 Layer Model in 3D-SIC for Thermal Analysis . . . . . . . . . . . . . 57 4.3.2 Floorplans of Active Layers in 3D-SIC Thermal Model . . . . . . . . 58 4.3.3 Package Model Configuration . . . . . . . . . . . . . . . . . . . . . 58 4.3.4 The Die Size and Power Estimation in The FreePDK 45nm Technology 60 5 Simulation Results and Comparisons 63 5.1 Transient Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Steady-state Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.1 Comparisons Between 2D IC Thermal Profiles and 3D IC Thermal Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Different Process Technology . . . . . . . . . . . . . . . . . . . . . 67 5.2.3 Different Thinned Substrate Layer Thicknesses . . . . . . . . . . . . 67 5.2.4 Different Bonding Layer Thickness and Bonding Conductivity without the TSV Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.5 Different Thicknesses and Dielectric Thermal Conductivity of The BEOL Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.6 Different Layer Assignments . . . . . . . . . . . . . . . . . . . . . . 71 5.2.7 Without BEOL and TSV Power . . . . . . . . . . . . . . . . . . . . 75 5.2.8 Comparison Between Proposed Thermal Conductivity and Average Weighted Thermal Conductivity of BEOL Layers . . . . . . . . . . . 75 5.2.9 With Different Convection Thermal Resistance . . . . . . . . . . . . 75 5.3 Comparison with Other Thermal Analysis Methods for 3D ICs . . . . . . . . 76 6 Conclusion 79 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    [1] “Interconnect,” in International Technology Roadmap for Semiconductors, 2009.
    [2] V. F. Pavlidis and E. G. Friedman, Three-dimensional Integrated Circuit Design (Systems on Silicon).
    [3] P. Franzon, “3D Integrated Circuit Design,” in 15th Asia and South Pacific Design Automation Conference, 2010.
    [4] “OpenRISC 1200 - Wikipedia, the free encyclopedia.” [Online]. Available: http://en.wikipedia.org/wiki/OpenRISC 1200
    [5] J. Lau and T. Yue, “Thermal Management of 3D IC Integration with TSV (Through Silicon Via),” in Electronic Components and Technology Conference, 2009. ECTC 2009. 9th, 2009, pp. 635–640.
    [6] A. Vassighi and M. Sachdev, Thermal and Power Management of Integrated Circuits.
    [7] C. Torregiani, H. Oprins, B. Vandevelde, E. Beyne, and I. D. Wolf, “Compact Thermal Modeling of Hot Spots in Advanced 3D-Stacked ICs,” in Electronics Packaging Technology
    Conference, 2009. EPTC ’09. 11th, 2009, pp. 131–136.
    [8] “3D wafer level packaging (3D-WLP).” [Online]. Available: http://www.imec.be/ScientificReport/SR2008/HTML/1224952.html
    [9] R. J. G. Chuan Seng Tan and L. R. Reif, Wafer Level 3-D ICs Process Technology.
    [10] Y. Lu, “3D Technology Based Circuit and Architecture Design,” in Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on, 2009, pp. 1124–1128.
    [11] A. Jain, R. Jones, R. Chatterjee, and S. Pozder, “Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits,” Components and Packaging Technologies, IEEE Transactions on, vol. 33, no. 1, pp. 56–63, 2010.
    [12] A. Jain, R. Jones, R. Chatterjee, S. Pozder, and Z. Huang, “Thermal Modeling and Design of 3D Integrated Circuits,” in Thermal and Thermomechanical Phenomena in
    Electronic Systems, 2008. ITHERM 2008. 11th Intersociety Conference on, 2008, pp. 1139–1145.
    [13] L. Chen, B. Vandevelde, B. Swinnen, and E. Beyne, “Enabling SPICE-type Modeling of The Thermal Properties of 3D-stacked ICs,” in Electronics Packaging Technology
    Conference, 2006. EPTC ’06. 8th, 2006, pp. 492–499.
    [14] C. Torregiani, B. Vandevelde, H. Oprins, E. Beyne, and I. D. Wolf, “Thermal Analysis of Hot Spots in Advanced 3D-stacked Structures,” in Thermal Investigations of ICs and
    Systems, 2009. THERMINIC 2009. 15th International Workshop on, 2009, pp. 56–60.
    [15] H. Oprins, M. Cupak, G. V. der Plas, P. Marchal, B. Vandevelde, A. Srinivasan, and E. Cheng, “Fine Grain Thermal Modeling of 3D Stacked Structures,” in Thermal Investigations of ICs and Systems, 2009. THERMINIC 2009. 15th International Workshop on, 2009, pp. 45–49.
    [16] S. Melamed, T. Thorolfsson, A. Srinivasan, E. Cheng, P. Franzon, and R. Davis,“Junction-level Thermal Extraction and Simulation of 3DICs,” in 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on, 2009, pp. 1–7.
    [17] “FireBolt - Gradient Design Automation.” [Online]. Available: http://www.gradient-da.com
    [18] Z. T. Min Ni, Qing Su and J. Kawa, “An Analytical Study on The Role of Thermal TSVs in a 3DIC Chip Stack,” in Design, Automation, and Test in Europe, 2010.
    [19] Y. Lee, R. Goel, and S. K. Lim, “Multi-functional Interconnect Co-optimization for Fast and Reliable 3D Stacked ICs,” in Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on, 2009, pp. 645–651.
    [20] H. Mizunuma, C. Yang, and Y. Lu, “Thermal Modeling for 3D-ICs with Integrated Microchannel Cooling,” in Computer-Aided Design - Digest of Technical Papers, 2009.
    ICCAD 2009. IEEE/ACM International Conference on, 2009, pp. 256–263.
    [21] W. Huang, M. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusamy,“Compact Thermal Modeling for Temperature-Aware Design,” in Design Automation Conference, 2004. Proceedings. 41st, 2004, pp. 878–883.
    [22] “FreePDK.” [Online]. Available: http://www.eda.ncsu.edu/wiki/FreePDK
    [23] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A Study of Through-Silicon-Via Impact on The 3D Stacked IC Layout,” in Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on, 2009, pp. 674–680.
    [24] R. Weerasekera, M. Grange, D. Pamunuwa, and H. Tenhunen, “On Signalling Over Through-Silicon Via (TSV) Interconnects in 3-D Integrated Circuits,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010, 2010, pp. 1325–1328.
    [25] S. K. Lim, “TSV-Aware 3D Physical Design Tool Needs for Faster Mainstream Acceptance of 3D ICs,” ACM DAC Knowledge Center, 2010.
    [26] M. B. Healy and S. K. Lim, “Power Delivery System Architecture for Many-tier 3D Systems,” in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 1682–1688.
    [27] R. Bhooshan, “Novel and Efficient IR-Drop Models for Designing Power Distribution Network for Sub-100nm Integrated Circuits,” in Quality Electronic Design, 2007.
    ISQED ’07. 8th International Symposium on, 2007, pp. 287–292.
    [28] “Intensive and extensive properties - Wikipedia, the free encyclopedia.” [Online].
    Available: http://en.wikipedia.org/wiki/Intensive and extensive properties
    [29] Sungjun Im and Navin Srivastava and Kaustav Banerjee and Kenneth E. Goodson,“Thermal Scaling Analysis of Multilevel Cu/Low-k Interconnect Structures in Deep
    Nanometer Scale Technologies,” pp. 525–530, 2005.
    [30] C. Xu, L. Jiang, S. Kolluri, B. Rubin, A. Deutsch, H. Smith, and K. Banerjee, “Fast 3-D Thermal Analysis of Complex Interconnect Structures Using Electrical Modeling and Simulation Methodologies,” in Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on, 2009, pp. 658–665.
    [31] N. H. E. Weste and D. F. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.
    [32] T. L. B. Frank P. Incropera, David P. DeWitt and A. S. Lavine, Fundamentals of Heat and Mass Transfer.
    [33] J. Chern, J. Huang, L. Arledge, P. Li, and P. Yang, “Multilevel Metal Capacitance Models for CAD Design Synthesis Systems,” Electron Device Letters, IEEE, vol. 13, no. 1, pp. 32–34, 1992.
    [34] K. Puttaswamy and G. H. Loh, “Thermal Analysis of a 3D Die-stacked Highperformance Microprocessor,” in Proceedings of the 16th ACM Great Lakes symposium
    on VLSI, 2006, pp. 19–24.
    [35] P. Franzon,W. Davis, M. Steer, S. Lipa, E. C. Oh, T. Thorolfsson, T. Doxsee, S. Berkeley, B. Shani, and K. Obermiller, “Design and CAD for 3D Integrated Circuits,” in Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, 2008, pp. 668–673.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE