簡易檢索 / 詳目顯示

研究生: 陳欣志
Shin-Chih Chen
論文名稱: 鋰電池熱現象之模擬
Thermal Analysis of Lithium Batteries
指導教授: 王詠雲
Chi-Chao Wan
萬其超
Yung-Yun Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 164
中文關鍵詞: 鋰電池熱分析散熱
外文關鍵詞: lithium battery, thermal analysis, heat dissipation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究鋰電池在放電過程中發熱與散熱的行為,在此研究中分別對方型以及圓柱型鋰電池這兩大系統建立了適切的數學模型。藉由詳細解析鋰電池內部的幾何形狀、介面性質,以及材料特性,將可獲得高精確的計算結果。除此之外,我們進一步將這些複雜的數學模型加以簡化,使之擁有優良的計算效率,並保有可接受的精確度,而能廣泛的應用在一般的電池輔助設計之上。這些技術將被我們用來分析鋰電池的操作條件與設計因子對電池安全性以及散熱效率的影響。
    在方型鋰電池系統方面,研究中顯示電池內部的溫度分布並非是對稱性的,而電池的最高溫度將會出現在略低於電池中心的位置。在自然對流之下,熱幅射將對整個系統貢獻高達 63% 的散熱效率。研究中並顯示,電池表面若施以強制對流,將足以控制電池內部的升溫。電池內部溫度的均勻性,並不會隨著對流的加強而不斷的惡化,而是有最不理想值的存在。
    在圓柱型鋰電池方面,研究結果顯示電池內部的最高溫並非出現在電池的正中心,而是出現於一個靠近電池中心的環狀區域。在此研究中,熱幅射在自然對流之下對電池系統的散熱貢獻亦再度被驗證,且強制對流對控制電池內部的溫度有絕對的效用。在另一方面,高導熱性的金屬材質較適合作為電池的外殼,因它可以使電池的散熱特性較不受外部流場型式的影響。此外,電池在各種強制對流流場的散熱行為,可以採用表面的平均熱傳系數來分析,以簡化問題的複雜度。


    Two precise thermal models for prismatic and spirally wound lithium batteries have been developed to investigate the thermal behavior of battery discharge. The geometric characteristics, interface behavior, boundary conditions and component properties were carefully considered to ascertain the reliability of the model. Besides the scientific research, several simplified thermal models aimed at the practical applications are also developed, and the validity is further certified by the detailed thermal model. These models were used to study the effects of design parameters and operating variables upon the thermal behavior of lithium batteries.
    The simulation results of prismatic lithium batteries show that the temperature distribution inside a battery is asymmetrical, and the maximum temperature occurs somewhere below the center of a battery. Furthermore, radiation was found to be an important factor, and it contributes up to 63% of the total heat dissipation. The results also indicates that strong forced convection is effective in suppressing the maximum temperature, and the temperature uniformity does not decrease continuously when the extent of forced convection is enhanced.
    For the analysis of spirally wound lithium batteries, the results show that the maximum temperature locates at a circular region near the hole but not at the exact center. The contribution of radiation on heat transfer is as large as that found in prismatic lithium batteries, and applying the forced convection can remove more than half the heat generated during discharge. The results also show that materials with high thermal conductivity are recommended for use as battery case. Furthermore, the thermal behavior of a battery under a cross flow can be roughly examined under a parallel flow with the average heat transfer coefficient to avoid the complicity.

    Abstract i 摘要 ii Contents iii List of Figures vii List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Paper Review 5 1.2.1 Thermal analysis of prismatic lithium batteries 5 1.2.2 Thermal analysis of spirally wound lithium batteries 6 1.3 Organization of the Research 7 References 9 Chapter 2 Thermal Analysis of Prismatic Lithium Batteries 11 2.1 Introduction 11 2.2 Model Development 13 2.3 Numerical Details 19 2.4 Results and Discussion 24 2.4.1 Temperature variation under galvanostatic discharge 25 2.4.2 Temperature distribution and thermal resistance within the battery 26 2.4.3 Temperature distribution on the surface 29 2.4.4 Heat dissipation mechanism on the surface 30 2.4.5 The effect of radiation on heat transfer 32 2.4.6 The effect of forced convection on heat transfer 33 2.4.7 Effect of contact layer on heat transfer 36 2.5 Conclusions 39 Nomenclature 41 References 44 Chapter 3 Simplified Thermal Models for Prismatic Lithium Batteries 45 3.1 Introduction 45 3.2 Model Development 47 3.3 Results and Discussion 51 3.4 Conclusions 59 Nomenclature 60 References 61 Chapter 4 Thermal Analysis of Spirally Wound Lithium Batteries 62 4.1 Introduction 62 4.2 Model Development 65 4.2.1 Development of the Detailed Thermal Model 66 4.2.2 Precision of the Approximated Local Thermal Conductivity 75 4.3 Numerical Details 79 4.4 Results and Discussion 82 4.4.1 Reliability of the thermal model 83 4.4.2 Battery Discharge under Natural Convection 86 4.4.3 Battery Discharge under the Forced Convection with a Parallel Flow 93 4.4.4 Battery Discharge under Forced Convection with a Cross Flow 96 4.5 Conclusions 100 Nomenclature 102 References 104 Chapter 5 Simplified Thermal Models for Spirally Wound Lithium Batteries 105 5.1 Introduction 105 5.2 Model Development 107 5.2.1 Simplified Thermal Model with Concentric Circles Approximation 108 5.2.2 Simplified Thermal Model with Homogeneous Core Region Approximation 113 5.3 Results and Discussion 115 5.3.1 Simplified Thermal Model with Concentric Circles Approximation 120 5.3.2 Simplified Thermal Model with Homogeneous Core Region Approximation 125 5.4 Conclusions 130 Nomenclature 131 References 133 Chapter 6 Three-Dimensional Thermal Analysis of Spirally Wound Lithium Batteries 134 6.1 Introduction 134 6.2 Model Development 136 6.3 Numerical Details 140 6.4 Results and Discussion 144 6.4.1 Battery discharge under natural convection 144 6.4.2 Battery discharge under forced convection 147 6.5 Conclusions 149 Nomenclature 150 References 152 Chapter 7 Conclusions 153 7.1 Conclusions 153 Appendix 156 A.1 Smart Adjustment Algorithm 156 A.2 Resources 159 A.3 About the Author 164

    Fundamentals of Heat Transfer
    [1] G.N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold, New York, 1969.
    [2] G.F. Hewitt, G.L. Shires and T.R. Bott, Process Heat Transfer, CRC press, London, 1993.
    [3] F.P. Incropera and D.P. DeWitt, Introduction to Heat Transfer, 4th ed., John Wiley & Sons, Inc., New York, 2002.
    [4] Y.A. Çengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw Hill, New York, 2003.
    Review Paper
    [5] G.G. Botte, V.R. Subramanian and R.E. White, J. Electrochem. Acta, 45, 2595 (2000).
    Thermal Modeling
    [6] W.C. Maskell, J. Power Sources, 3, 211 (1978).
    [7] K.W. Choi and N.P. Yao, J. Electrochem. Soc., 126, 1325 (1979).
    [8] Y. Ogata, S. Kainuma, M. Yasuda and F. Hine, J. Electrochem. Soc., 132, 2594 (1985).
    [9] Y.I. Cho and G. Halpert, J. Power Sources, 18, 109 (1986).
    [10] J. Lee, K.W. Choi, N.P. Yoo and C.C. Christianson, J. Electrochem. Soc., 133, 1286 (1986).
    [11] Y.I. Cho, H. Frank and G. Halpert, J. Power Sources, 21, 183 (1987).
    [12] Y.I. Cho, J. Electrochem. Soc., 134, 771 (1987).
    [13] H. Kawamoto and Y. Kusakabe, J. Electrochem. Soc., 136, 1355 (1989).
    [14] T.I. Evans and R.E. White, J. Electrochem. Soc., 136, 2145 (1989).
    [15] Y.I. Cho and D.W. Chee, J. Electrochem. Soc., 138, 927 (1991).
    [16] Y. Chen and J.W. Evans, J. Electrochem. Soc., 140, 1833 (1993).
    [17] E.E. Kalu and R.E. White, J. Electrochem. Soc., 140, 23 (1993).
    [18] Y. Chen and J.W. Evans, J. Electrochim. Acta, 39, 517 (1994).
    [19] T.F. Fuller, M. Doyle and J. Newman, J. Electrochem. Soc., 141, 1 (1994).
    [20] Y. Chen and J.W. Evans, J. Electrochem. Soc., 141, 2947 (1994).
    [21] C.R. Pals and J. Newman, J. Electrochem. Soc., 142, 3274 (1995).
    [22] C.R. Pals and J. Newman, J. Electrochem. Soc., 142, 3282 (1995).
    [23] Y. Chen and J.W. Evans, J. Electrochem. Soc., 143, 2708 (1996).
    [24] L. Song and J.W. Evans, J. Electrochem. Soc., 145, 2327 (1998).
    [25] Y. Chen, J.W. Evans and G. Scharrer, J. Power Sources, 70, 240 (1998).
    [26] S.A. Hallaj, H. Maleki, J.S. Hong and J.R. Selman, J. Power Sources, 83, 1 (1999).
    [27] W.b. Gu and C.Y. Wang, J. Electrochem. Soc., 147, 2910 (2000).
    [28] M.S. Wu, Y.H. Hung, Y.Y. Wang and C.C. Wan, J. Electrochem. Soc., 147, 930 (2000).
    [29] T.D. Hatchard, D.D. MacNeil, A. Bsau and J.R. Dahn, J. Electrochem. Soc., 148, 7 (2001).
    [30] A. Funahashi, Y. Kida, K. Yanagida, T. Nohma and I. Yonezu, J. Power Sources, 104, 248 (2002).
    [31] S.A. Hallaj and J.R. Selman, J. Power Sources, 110, 341 (2002).
    [32] A.A. Pesaran, J. Power Sources, 110, 377 (2002).
    [33] P. Nelson, D. Dees, K. Amine and G. Henriksen, J. Power Sources, 110, 349 (2002).
    [34] H. Maleki and A.K. Shamsuri, J. Power Sources, 115, 131 (2003).
    [35] P.M. Gomadam, R.E. White and J.W. Weidner, J. Electrochem. Soc., 150, A1339 (2003).
    [36] S.C. Chen, C.C. Wan and Y.Y. Wang, J. Power Sources, 140, 111 (2005).
    Electrochemical Modeling
    [37] J. Newman and C.W. Tobias, J. Electrochem. Soc., 109, 1183 (1962).
    [38] J. Newman, Electrochemical systems, Prentice-Hall, New York (1972).
    [39] K. West, T. Jacobsen and S. Atlung, J. Electrochem. Soc., 129, 1480 (1982).
    [40] D. Bernardi, E. Pawlikowski and J. Newman, J. Electrochem. Soc., 132, 5 (1985).
    [41] S. Waaben, I. Moskowitz, J. Federico and C.K. Dyer, J. Electrochem. Soc., 132, 1357 (1985).
    [42] M.M. Menon and U. Landau, J. Electrochem. Soc., 134, 2249 (1987).
    [43] J.S. Chen and H.Y. Cheh, J. Electrochem. Soc., 140, 1205 (1993).
    [44] J.S. Chen and H.Y. Cheh, J. Electrochem. Soc., 140, 1213 (1993).
    [45] T.F. Fuller, M. Doyle and J. Newman, J. Electrochem. Soc., 141 982 (1994).
    [46] E.J. Podlaha and H.Y. Cheh, J. Electrochem. Soc., 141, 1751 (1994).
    [47] M. Doyle and J. Newman, J. Power Sources, 54, 46 (1995).
    [48] M. Doyle and J. Newman, J. Electrochim. Acta, 40, 2191 (1995).
    [49] M. Doyle and J. Newman, J. Electrochem. Soc., 143, 1890 (1996).
    [50] L. Rao and J. Newman, J. Electrochem. Soc., 144, 2697 (1997).
    [51] J.N. Harb and R.M. LaFollette, J. Electrochem. Soc., 146, 809 (1999).
    [52] M. Jain and J.W. Weidner, J. Electrochem. Soc., 146, 1370 (1999).
    [53] P. Arora, M. Doyle and R.E. White, J. Electrochem. Soc., 146, 3543 (1999).
    [54] M. Jain, G. Nagasubramanian, R.G. Jungst and J.W. Weidner, J. Electrochem. Soc., 146, 4023 (1999).
    [55] L. Song and W. Evans, J. Electrochem. Soc., 147, 2086 (2000).
    [56] G.G. Botte and R.E. White, J. Electrochem. Soc., 148, A54 (2001).
    [57] M.W. Verbrugge and R.S. Conell, J. Electrochem. Soc., 149, A45 (2002).
    [58] P. M. Gomadam, J.W. Weidner, R. A. Dougal and R.E. White, J. Power Sources, 110, 267 (2002).
    [59] C.Y. Wang and V. Srinivasan, J. Power Sources, 110, 364 (2002).
    [60] V. Srinivasan and C.Y. Wang, J. Electrochem. Soc., 150, A98 (2003).
    [61] T. Yamauchi, K. Mizushima, Y. Satoh and S. Yamada, J. Power Sources, 136, 99 (2004).
    Relative Topics
    [62] P. Yu, B.N. Popov, J.A. Ritter and R.E. White, J. Electrochem. Soc., 146, 8 (1999).
    [63] L. Song and J.W. Evans, J. Electrochem. Soc., 146, 869 (1999).
    [64] H. Maleki, S.A. Hallaj, J.R. Selman, R.B. Dinwiddie and H. Wang, J. Electrochem. Soc., 146, 947 (1999).
    [65] S.A. Hallaj and J.R. Selman, J. Electrochem. Soc., 147, 3231 (2000).
    [66] J.R. Selman, S.A. Hallaj, I.U. Uchida and Y. Hirano, J. Power Sources, 97, 726 (2001).
    Numerical Techniques
    [67] B. Carnahan. H. A. Luther and J. O. Wilkers, Applied Numerical Methods, John Wiley & Sons. Inc., New Work (1969).
    [68] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York (1980).
    [69] S.L Lee, Numer. Heat Transfer, 16, 161 (1989).
    [70] J. Wu, V. Srinivasan, J. Xu and C.Y. Wang, J. Electrochem. Soc., 149, A1342 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE