簡易檢索 / 詳目顯示

研究生: 蔡澄明
Cheng-ming Tsai
論文名稱: 膽固醇對台灣眼鏡蛇心臟毒素蛋白A3進入心肌細胞的影響研究
Effect of cholesterol on the internalization of Taiwan cobra cardiotoxin A3 in H9c2 cell
指導教授: 吳文桂
Wen-guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 48
中文關鍵詞: 台灣眼鏡蛇心臟蛇毒膽固醇環糊精發動蛋白內吞作用共軛焦顯微鏡
外文關鍵詞: Taiwan cobra, cardiotoxin, cholesterol, cyclodextrin, dynamin, endocytosis, confocal microscope
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的研究發現台灣眼鏡蛇心臟毒蛋白A3進入H9c2心肌細胞的行為會受到膽固醇的影響,與文獻報導過的一些分子進入細胞的行為相反﹙70、74﹚。因此本論文利用調整細胞膜膽固醇濃度,以共軛焦顯微鏡及細胞毒性測試觀察心臟毒蛋白A3的機制表現,並藉由抑制dynamin參與的胞飲作用,推測心臟毒蛋白A3可能的進入細胞之途徑。結果顯示心臟毒蛋白A3進入細胞與細胞膜膽固醇濃度有關,心臟毒蛋白A3進去的數量隨著膽固醇濃度的減少而增加,細胞毒性也隨著增加,因此細胞膜膽固醇濃度除了影響心臟毒蛋白A3進入細胞的表現也影響其細胞毒性。另外,抑制dynamin參與的胞飲作用後對心臟毒蛋白A3進去細胞的表現沒有明顯的影響,排除了心臟毒蛋白A3進入細胞是經由籠型蛋白及細胞窖的可能性。由以上研究結果,心臟毒蛋白A3進入細胞的機制是對膽固醇敏感而且不需要dynamin參與的過程。


    It has recently been shown that CTX A3 internalizes into H9c2 cell (Chia-Hui Wang, phD thesis; Jin-Lang Lin, Master thesis). It is a cholesterol-sensitive process which is different from the other reported cases. In my studies, confocal microscopy and cytotoxicity assay were employed to observe the behavior of CTX A3 after modifying the concentration of cholesterol on cell plasma membrane. Dynasore, the specific inhibitor of dynamin-dependent endocytosis, was used to investigate the possible mechanism involved in the internalization of CTX A3. The results showed that the internalization of CTX A3 was cholesterol concentration- dependent and dynamin-independent process, and the cytotoxicity of CTX A3 is cholesterol-sensitive. It was suggested that the cytotoxicity of CTX A3 was correlated with the internalization of CTX A3.

    第一章 序論----------------------------------------------3 1-1蛇毒﹙snake venom﹚------------------------------------3 1-2膽固醇﹙cholesterol﹚---------------------------------10 1-3發動蛋白﹙dynamin﹚-----------------------------------13 1-4發動蛋白活性抑制劑dynasore-1--------------------------15 1-5內吞作用﹙Endocytosis﹚-------------------------------16 1-6研究目的----------------------------------------------18 第二章 實驗材料與方法-----------------------------------19 2-1材料--------------------------------------------------19 2-2儀器--------------------------------------------------19 2-3方法--------------------------------------------------20 2-3-1心臟蛇毒的製備-----------------------------------20 2-3-2 細胞培養----------------------------------------20 2-3-3 螢光標定----------------------------------------21 2-3-4細胞毒性檢測MTT-reducing activity﹙MTT assay﹚---22 2-3-5活細胞﹙living cell﹚螢光染色--------------------23 2-3-6細胞膜膽固醇濃度對心臟毒素進入細胞的影響---------23 2-3-7dynamin活性抑制劑dynasore-1對心臟毒素進入細胞的影 響-----------------------------------------------24 2-3-8 共軛焦顯微鏡觀察--------------------------------25 第三章 實驗結果-----------------------------------------29 3-1細胞膜膽固醇濃度對心臟毒蛋白A3進入細胞的影響----------29 3-2細胞膜膽固醇濃度對心臟毒蛋白A3細胞毒性的影響----------29 3-3dynamin活性抑制劑dynasore-1對心臟毒素A3進入細胞的影響-30 第四章 結果討論-----------------------------------------36 4-1細胞膜膽固醇濃度對心臟毒蛋白A3進入細胞的比較之探討----36 4-2dynamin活性抑制劑dynasore-1對心臟毒蛋白進入細胞影響之探 討----------------------------------------------------38 4-3結論--------------------------------------------------39 參考文獻-------------------------------------------------40

    參考文獻

    1. Sarkar NK﹙1947﹚Isolation of cardiotoxins from snake venom ( Naja tripudians, monocellate variant ). J Indian Chem Soc.24, 227-232

    2. Gilquin, B., Roumestand, C., Zinn Justin, S., Menez, A., and Toma, F.﹙1993﹚Refined three-dimensional solution structure of snake cardiotoxin: analysis the side chain organization suggests the existence of a possible phospholipids binding site. Biopolymers.33, 1659-1675

    3. Lin, S.R., Chang, K.L., and Chang, C.C.﹙1993﹚Chemical modification of amino groups in cardiotoxin III from Taiwan Cobra (Naja naja atra) venom. Biochem Mol Biol Int.31, 175-184

    4. Lin, S.R., Chang, L.S., and Chang L.K.﹙2002﹚Separation and structure function studies of Taiwan cobra cardiotoxin. J.Pro.Chem.21, 81-86

    5. Sue, S.C., Jarrell, H.C., Brisson, J.R. and Wu, W.﹙2001﹚Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry.40, 12782-1279

    6. Chang C.C. ﹙1979﹚The action of snake venomes on nerve and muscle
    Springer Berlin.52, 309-358

    7. Couteaux R, Mira JC, d'Albis A. ﹙1988﹚Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol Cell. 62(2), 171-182

    8. Chang, C.C., Lee, C.Y. ﹙1966﹚Electrophysical study of neuromuscular blocking action of cobra neurotoxin. Br. J. Pharmacol. Chemother.28, 172-181

    9. Ider, R.C., Khader, F. ﹙1982﹚Biochemical and pharmacological properties of cardiotoxins isolated from cabra venom.Toxicon.13, 437-446

    10. Ouyang C, Teng CM. ﹙1979﹚The action mechanism of the purified platelet aggregation principle of Trimeresurus mucrosquamatus venom. Thromb Haemost. May 25; 41(3), 475-490

    11. Chen YH, Hu CT, Yang JT. ﹙1984﹚ Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem Int. Feb; 8(2), 329-338

    12. Chen YH, Liou RF, Hu CT, Juan CC, Yang JT. ﹙1987﹚Interaction of snake venom cardiotoxin (a membrane-disruptive polypeptide) with human erythrocytes. Mol Cell Biochem. 73(1), 69-76

    13. Jiang, M.S., Fletcher, J.E., Smith, L.A. ﹙1989﹚Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom. Toxicon. 27(2), 247-257

    14. Condrea E. ﹙1974﹚Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia. Feb 15; 30(2):121-9.

    15. Condera E. ﹙1979﹚Hemolytic effects of snake venoms. (Lee, CY ed) Springer, Berlin.448-79

    16. Tu A. ﹙1977﹚Venoms:Chemistry and Molecular BiologyJohn Wiely and Sons,New York.

    17. Bougis P, Rochat H, Pieroni G, Verger R. ﹙1981﹚Penetration of phospholipid monolayers by cardiotoxins. Biochemistry. Aug 18; 20(17):4915-20

    18. Fletcher J.E., Jiang M.S. ﹙1993﹚Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin.Toxicon. Jun; 31(6):669-95

    19. Huang, J. L., Trumble, W. R. ﹙1991﹚Cardiotoxin from cobra venom affects the Ca-Mg-ATPase of cardiac sarcolemmal membrane vesicles. Toxicon. 29(1):31-41

    20. Sun, J.J., Walker, M.J. ﹙1986﹚Actions of cardiotoxins from the southern Chinese cobra ( Naja naja atra ) on rat cardiac tissue.
    Toxicon. 24(3):233-45

    21. Lin Shiau SY, Huang MC, Lee CY ﹙1976﹚Mechanism of action of cobra cardiotoxin in the skeletal muscle.J Pharmacol Exp Ther. Mar; 196(3):758-70

    22. Chien KY, Huang WN, Jean JH, Wu WG. ﹙1991﹚Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra ( Naja naja atra ) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues.
    J Biol Chem. Feb 15; 266(5):3252-9

    23. Chien KY, Chiang CM, Hseu YC, Vyas AA, Rule GS, Wu W. ﹙1994﹚Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem. May 20; 269(20):14473-83

    24. Batenburg AM, Bougis PE, Rochat H, Verkleij AJ, de Kruijff B.﹙1985﹚Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry. Dec 3; 24(25):7101-10

    25. Chiang CM, Chien KY, Lin HJ, Lin JF, Yeh HC, Ho PL, Wu WG. ﹙1996﹚Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH.
    Biochemistry Jul 16; 35(28):9167-76

    26. Efremov RG, Volynsky PE, Nolde DE, Dubovskii PV, Arseniev AS. ﹙2002﹚
    Interaction of cardiotoxins with membranes: a molecular modeling study.
    Biophys J. Jul; 83(1):144-53

    27. Dubovskii PV, Lesovoy DM, Dubinnyi MA, Utkin YN, Arseniev AS. ﹙2003﹚Interaction of the P-type cardiotoxin with phospholipid membranes.
    Eur J Biochem. May; 270(9):2038-46

    28. Huang WN, Sue SC, Wang DS, Wu PL, Wu WG. ﹙2003﹚Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry Jun 24; 42(24):7457-66

    29. Forouhar F,Huang WN, Liu JH, Chien KY, Wu WG, Hsiao CD. ﹙2003﹚Structure basis of membrane-induced cardiotoxin A3 oligomerization
    J Biol Chem. Jun; 278(24):21980-8

    30. Wu, P.L., Mori, S., Lee, S.C., Akakura, N., Wu, W. and Takada, Y.﹙2005﹚Specific binding of cobra cardiotoxins, memers of the Ly-6 protein family, to integrin alphavbeta3. J Biol Chem: in press

    31. Sue, S.C., Rajan, P.K., Chen, T.S., Hsieh, C.H., and Wu, W. ﹙2003﹚Action of Taiwan cobra cardiotoxin on membranes:binding modes of a beta-sheet polypeptide with phosphatidylcholine bilayers. Biochemistry. 36, 9826-9836

    32. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y.S., Chiang, C.M., Chi, L.M. and Wu, W. ﹙1997﹚Heparin and heparin sulfate bind to snake cardiotoxin.Sulfated oligosaccharides as a potential target for cardiotoxin action. J.Biol.Chem. 272, 1484-1492

    33. Vyas, A.A., Pan, J.J., Petal, H.V., Vyas, K.A., Chiang, C.M., Sheu, Y.C. Hwang, J.K., and Wu, W. ﹙1997﹚Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet hepain-binding structural motif. J.Biol.Chem. 272, 9661-9670

    34. Vyas, K.A., Petal, H.V., Vyas., A.A., and Wu, W. ﹙1998﹚Glycosaminiglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 37, 4527-4534

    35. Chia-Hui Wang, Jyung-Hurng Liu, Shao-Chen Lee, Chwan-Deng Hsiao, and Wen-guey Wu. ﹙2006﹚Glycosphingolipid-facilitated Membrane Insertion and Internalization of Cobra Cardiotoxin. J Biol Chem. Jan 6; 281(1):656-67

    36. Huang J, Feigenson GW. ﹙1999﹚A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J. Apr; 76(4): 2142-57

    37. McConnell HM, Radhakrishnan A. ﹙2003﹚Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta. Mar 10; 1610(2): 159-73

    38. Pichler H, Riezman H. ﹙2004﹚Where sterols are required for endocytosis. Biochim Biophys Acta. Nov 3; 1666(1-2):51-61

    39. Keller P, Simons K ﹙1998﹚Cholesterol is required for surface transport of influenza virus hemagglutinin
    J Cell Biol. Mar 23; 140(6):1357-67

    40. Nichols B. ﹙2003﹚Caveosomes and endocytosis of lipid rafts
    J Cell Sci. Dec 1; 116(Pt 23):4707-14

    41. Maxfield FR, Tabas I. ﹙2005﹚Role of cholesterol and lipid organization in disease. Nature. Dec 1; 438(7068):612-21

    42. Schroeder R, London E, Brown D. ﹙1994﹚Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. Dec 6; 91(25):12130-4

    43. Sharmin N. Ahmed, Deborah A., Brown, Erwin London. ﹙1997﹚On the Origin of Sphingolipid/Cholesterol-Rich Detergent-Insoluble Cell Membranes: Physiological Concentrations of Cholesterol and Sphingolipid Induce Formation of a Detergent-Insoluble, Liquid-Ordered Lipid Phase in Model Membranes. Biochemistry. 36(36):10936 -10943

    44. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. ﹙2001﹚Lipid rafts reconstituted in model membranes.
    Biophys J. Mar; 80(3):1417-28

    45. Brown D. A., Rose J. K. ﹙1992﹚Sorting of GPI-anchored proteins to glycolipid-enriched membrane sub domains during transport to the apical cell surface. Cell. 68: 533-544

    46. Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. ﹙1999﹚Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated.
    J Biol Chem. Feb 5; 274(6):3910-7

    47. Moffett S, Brown DA, Linder ME. ﹙2000﹚Lipid-dependent targeting of G proteins into rafts. J Biol Chem. Jan 21; 275(3):2191-8.

    48. Zacharias DA, Violin JD, Newton AC, Tsien RY. ﹙2002﹚Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science May 3; 296(5569):913-6

    49. Brown D. A., London, E. ﹙1997﹚Structure of detergent-resistant membrane domains:Does phase separation occur in biological membranes?
    Biochem Biophys Res Commun. Nov 7; 240(1):1-7

    50. London E. ﹙2002﹚Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. Aug; 12(4):480-6

    51. Janes, P. W., Ley, S. C., Magee, A. I. ﹙1999﹚Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. The Journal of Cell Biology. 147: 447-461

    52. Nagafuku, M. Kabayama, K., Oka, D., Kato, A., Tani-ichi, S., Shimada, Y., Ohno-Iwashita, Y., Yamasaki, S., Saito, T. Iwabuchi, K., Hamaoka, T., Inokuchi, J. I., Kosugi, A. ﹙2003﹚ Reduction of glycosphinogolipi in lipid rafts affects the expression state and function glycosylphosphatidylinositol-anchored protein,but does impair signal transduction via the T cell receptor. J Biol Chem. 278: 51920-51927

    53. Harder T., Scheiffele, P., Verkade, P., Simons, K. ﹙1998﹚Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. May 18; 141(4):929-42

    54. Orlandi PA, Fishman PH. ﹙1998﹚Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. May 18; 141(4):905-15

    55. Awasthi-Kalia M, Schnetkamp PP, Deans JP. ﹙2001﹚Differential effects of filipin and methyl-beta-cyclodextrin on B cell receptor signaling.
    Biochem Biophys Res Commun. Sep 14; 287(1):77-82

    56. Simons K., Toomre, D. ﹙2000﹚Lipid rafts and signal transduction.
    Nat. Rev. Mol. Cell Biol. 1: 31-41

    57. Smart, E. J., Graft, G. A., MaNiven, M. A., Sessa, W. C., Engelman, J. A. Scherer, P. E., Okamoto, T., Lisanti, M. P. ﹙1999﹚Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19: 7289-7304

    58. Pike, L. J. ﹙2003﹚Lipid raft:bring order to chaos. J.Lipid Res. 44: 655-667

    59. Rodgers W, Farris D, Mishra S. ﹙2005﹚Merging complexes: properties of membrane raft assembly during lymphocyte signaling.
    Trends Immunol. Feb; 26(2):97-103

    60. Simons K, Ikonen E. ﹙1997﹚Functional rafts in cell membranes. Nature. Jun 5; 387(6633):569-7

    61. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE. ﹙1999﹚Acute cholesterol depletion inhibits clathrin-coated pit budding.
    Proc Natl Acad Sci U S A. Jun 8; 96(12):6775-80

    62. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. ﹙1999﹚ Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles.
    Mol Biol Cell. Apr; 10(4):961-74

    63. Orlandi PA, Fishman PH. ﹙1998﹚Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 1998 May 18; 141(4):905-15

    64. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG. ﹙2003﹚Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol. Feb 3; 160(3):321-8

    65. Shpetner, H.S. and Vallee, R.B. ﹙1989﹚Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421-432

    66. Chen, M.S., Obar, R.A., Schroeder, C.C., Austin, T.W., Poodry, C.A., Wadsworth, S.C., and Vallee, R.B. ﹙1991﹚Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis.
    Nature 351: 583-586

    67. van der Bliek, A.M. and Meyerowitz, E.M. ﹙1991﹚Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411-414

    68. Sven Thoms and Ralf Erdmann. ﹙2005﹚Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation
    FEBS Journal 272, 5169-5181

    69. Macia, E., Ehrlich, M., Massol, R., Brunner, C., and Kirchhausen, T. ﹙2006﹚Dual functions of dynamin during endocytosis reveale by dynasore, a cell permeable chemical inhibitor of dynamin. Unpublished results.

    70. Sean D. Conner and Sandra L. Schmid. ﹙2003﹚Regulated portals of entry into the cell. Nature Mar 6; 422; 37-44

    71. Aderm, A., Underhill, D.M. ﹙1999﹚Mechanisms of phagocytosis in macrophages. Annu. Rev. Immuno. 17, 593-623

    72. Sharma, D.K., Brown, J.C., Choudhury, A., Peterson, T.E., Holicky, E., Marks, D.L., Simari, R., Parton, R.G., and Pagano, R.E. ﹙2004﹚Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell. 15, 3114-3122

    73. Schmid, S.L. ﹙1997﹚Clathrin-coated vesicle formation and protein sorting:An integrated process. Annu. Rev. Biochem. 66, 511-548

    74. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C., Wakeham, D.E ﹙2001﹚Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol. 17: 517-68

    75. Matthew j, Robert G. Parton ﹙2005﹚Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta. 1745: 273-286

    76. 林金郎﹙2005﹚ Effect of cobra cardiotoxin structure on its internalization process in H9c2 cell 國立清華大學/生命科學所/碩士

    77. Christian, A.E., Haynes, M.P., Phillips, M.C., and Rothblat, G.H. ﹙1997﹚Use of cyclodextrins for manipulating cellular cholesterol content. J.Lipid Res. 38, 2264-2272

    78. Wang, C.H., Wu, W.G. ﹙2005﹚Amphiphilic β-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Letters 579, 3169-3174

    79. 王佳蕙﹙2005﹚ Membrane pore formation and internalization of cobra cardiotoxin in myocyte: mechanism and cytotoxicity
    國立清華大學/生命科學所/博士

    80. Anette M. Hommelgaard1, Kirstine Roepstorff, Frederik Vilhardt, Maria L. Torgersen, Kirsten Sandvig and Bo van Deurs. ﹙2005﹚Caveolae: Stable Membrane Domains with a Potential for Internalization. Traffic 6: 720–724

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE