研究生: |
黃國雁 Huang, Kuo-Yen. |
---|---|
論文名稱: |
利用X光小角度散射法研究帶電荷圓盤狀微胞與牛血清蛋白及溶菌酶之間的交互作用 SAXS Studies on the Interaction of BSA and Lysozyme with Charged Bicelles |
指導教授: |
林滄浪
Lin, Tsang-Lang |
口試委員: |
鄭有舜
Jeng, U-Ser 陳燦耀 Chen, Tsan-Yao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 圓盤狀微胞 、牛血清蛋白 、溶菌酶 、小角度散射 、長方柱狀結構 |
外文關鍵詞: | Bicelle, BSA, Lysozyme, SAXS, Rectangular columnar |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用兩性分子親疏水端特性所自組裝形成的載體已經被廣泛的被應用於藥物輸送、基因治療、蛋白質結晶等等用途上。利用不同磷脂質分子,變化混合比例、疏水基形態及長度大小、親水基特性等等,能夠自組裝形成多樣的結構,如微胞( micelle )、微脂粒(liposome)、圓盤狀微胞(bicelle)等等。當所形成的載體運輸進入血液循環系統當中,血液中的血清蛋白會與載體產生交互作用,造成結構上的不穩定,間接導致藥物傳輸及釋放的效率。;因此本研究主要利用小角度X光散射( SAXS ) 研究不同組成成分及帶電荷量的圓盤狀微胞(bicelle)與牛血清蛋白(Bovine Serum Albumin , BSA) 及溶菌酶(Lysozyme)之間交互作用所造成結構上的變化。帶電荷圓盤狀微胞中心區之雙層膜部分主要用具長鏈的二棕榈酰基卵磷酯DPPC摻入不同比例帶電荷分子如DOTAP、DC-Cholesterol和DPPG,而用具長鏈的磷酯分子DiC7PC或CHAPSO構成成圓盤側邊部分,以雙層膜區的分子總濃度固定為10 mM,側邊區的分子總濃度固定為3.3 mM,摻入的帶電荷分子和雙層膜區的分子總濃度比例定在 0,1%,3%,5%,7.5%,10%,12.5%,15%,20%,30%,45%。而BSA及Lysozyme蛋白質濃度則是從0 mM 至 0.69 mM。
對於DPPC/DiC7PC/DC-cholesterol及DPPC/CHAPSO/DC-cholesterol系統,由小角度X光散射和電子顯微鏡觀察結果,當摻入的電荷比例固定為15%,在低濃度BSA時會出現層狀( Lamellar )結構,具有成比例的X光繞射峰,當濃度提高到0.10 mM BSA,會出現另一組X光繞射峰,在層狀結構中產生二維矩形柱狀相(2D Rectangular Columnar Phase ),夾在帶電荷雙層膜間的BSA會形成規律的排列,且上下層的BSA的位置會交互錯開,因此上下層的BSA排列也有規律,產生關連性,但此結構在DPPC/DiC7PC/DOTAP及DPPC/CHAPSO/DOTAP系統並沒有出現,是由於DC-Cholesterol分子為尾端大親水基頭部小,可造成雙層膜膜的彎曲,而DC-Cholesterol因親水基頭部位在雙層膜親疏水界面,BSA也需伸較深入到DPPC頭基親水層內 以便和DC-Cholesterol的帶正電荷親水頭基作用,如此可使雙層膜作波形彎曲較緊密貼住BSA,形成規律的排列。而DOTAP分子由於頭端與尾端部分體積相近,形成較為平整的雙層膜層狀結構,不易彎曲,且電荷分佈在較為靠近雙層膜表面,BSA可直接和雙層膜層表層的DOTAP帶正電荷親水頭基作用,不太會造成雙層膜 彎曲,上下層的BSA排列也不會有關連性。研究亦發現適量的diC7PC或CHAPSO對形成此二維矩形柱狀相亦非常重要,會影響雙層膜的曲率變化。另外經由圓二色光譜分析發現夾在雙層膜間的BSA會部分展開。由TEM觀察發現加入BSA會使圓盤微胞融合成較大片,然後堆疊成大團的聚集結構。
當改加入Lysozyme時,因其主要帶正電荷,所以研究其與攙入蒂負電荷的DPPG的圓盤微胞DPPC/DiC7PC/DPPG及DPPC/CHAPSO/DPPG作用。在0.175 mM Lysozyme濃度,在15% 及20%攙入電荷比例時,會出現明顯的兩組lamellar結構,長間距週期86.7 Å,短間距週期71.5Å,,短間距的繞射峰較細高,而長間距的繞射峰較寬矮(結構較鬆散,層數較少或不整齊) ,長間距的結構可能是部分Lysozyme會形成dimer造成。
The self-assembly of lipids was widely studied for many biomedical applications, such as drug delivery, gene therapy and protein crystallization. In this study, we focus on using the charged disc-shaped bicelles to form complexes with the Bovine Serum Albumin (BSA) and Lysozyme. The BSA is a positive charged soft protein at neutral pH and it tends to unfold under encapsulation or adsorption. The Lysozyme is a negatively charged hard protein and its size is much smaller than the BSA. The disc shaped bicelles are formed by mixing long-chain lipids with short-chain lipids. The long-chain lipids form the center bilayer core while the short-chain lipids form the rim of the bicelle. In this study, the cationic bicelles are formed by doping with DC-Cholesterol or DOTAP. The anionic bicelles are formed by doping with DPPG. Two types of bicelles, DPPC/DiC7PC/ and DPPC/CHAPSO, were used in this study with a total lipid concentration kept at 10 mM. The structure of biclle/protein complexes was investigated by synchrotron small-angle X-ray scattering and also by TEM. Due to the strong charge interaction, the BSA and Lysozyme induce bicelles to form aggregates. For the addition of BSA to DPPC/DiC7PC/DC-cholesterol and DPPC/CHAPSO/DC-cholesterol bicelles, at fixed 15% doping charge, lamellar structure appears at low BSA concentrations. When the BSA concentration is increased to 0.10 mM, additional series of diffraction peaks appear, which can be identified to be a 2D rectangular phase. The lipid bilayer is modulated by the encapsulated BSA molecules. The presence of DC-cholesterol and the short-chain lipid allow the bilayer to form wave-like form to wrap around the BSA closely. The DC-cholesterol has a relatively small hydrophilic head group and a bulky hydrophobic tail and the short-chain lipid has a shorter hydrophobic. The presence of these two components allows the bilayer to form wave-like form with positive and negative curvature regions. As for the DPPC/DiC7PC/DOTAPand DPPC/CHAPSO/DOTAP bicelles, the addition of BSA only induce the formation of lamellar structure. The 2D regtangular phase does not appear. This is likely due to that the presence of DOTAP in the bilayer could not relax the bending rigidity of the bilayer and the modulated bilayer structure could not br formed.
For studying the interaction with Lysozyme, we prepared anionic bicelles of DPPC/DiC7PC/DPPG and DPPC/CHAPSO/DPPG At 0.175 mM concentrations of Lysozyme and 15% or 20% doping charge, the SAXS profiles reveal two lamellar structures with d-spaing of 86.7 Å and 71.5Å. The smaller d-spacing lamellar structure has much sharper diffraction peaks than than the larger d-spaing lamellar strcture. Since the d-spacing is larger and it is less ordered, it is likely that the larger d-spaing lamellar strcture is formed with the dimmers of Lysozymes.
1. Marketa Ryvolova, Jana Chomoucka, Jana Drbohlavova, Kopel, Pavel Babula, David Hynek, Vojitech Adam, Toma Eckschlager, Jaromir Hubalek, Marie Stiborova, Jozef Kaiser, Rene Kizek, Sensors 2012, 12, 14792-14820.
2. https://biology.tutorvista.com/biomolecules/lipids.html.
3. Jinru Bian, and Mary F. Roberts, Biochemistry, 1990, 29, 7928–7935.
4. Shah Hirva, Patel Jenisha, J. Crit. Rev.,2016 ,3 ,17-22.
5. Anna Diller, Cecile Loudet, Fabien Aussenac,Gerard Raffard, Sylvie Fournier, Michel Laguerre, Axelle Grelard, Stanley J. Opella, Francesca M. Marassi, and Erick J. Dufourc. Biochimie. 2009, 91, 744–751.
6. Jinru Bian, and Mary F. Roberts, Biochemistry, 1990, 29, 7928–7935.
7. Emma Johansson, Anna Lundquist, Shusheng Zuo, Katarina Edwards, Biochim Biophys Acta, 2007, 1768, .1518-1525.
8. Zhang, W., J. Sun, and Z. He, Asian Journal of Pharmaceutical Sciences, 2013, 8, 143-150.
9. Ming Li, Hannah H. Morales, John Katsaras, Norbert Kučerka, Yongkun Yang, Peter M. Macdonald, and Mu-Ping Nieh, Langmuir, 2013 ,29 , 15943-15957.
10. Sang Ho Park, Stanley J. Opella, J. Am. Chem. Soc, 2010,132 , 12552–12553.
11. L. Barbosa-Barros, A. de la Maza, J. Estelrich, A. M. Linares, M. Feliz, P. Walther, R. Pons and O. López, Langmuir, 2008, 24, 5700–5706.
12. Ronald Soong, Mu-Ping Nieh, Eric Nicholson, John Katsaras, Peter M. Macdonald, Langmuir, 2010, 26, 2630-2638.
13. Triba, M.N., Warschawski D.E. , and Devaux P.F. , Biophys J, 2005, 88 ,1887-1901.
14. https://en.wikipedia.org/wiki/Bovine_serum_albumin.
15. Yumiko Yokouchi, Tadashi Tsunoda, Tomohiro Imura, Hitoshi Yamauchi, Shoko Yokoyama, Hideki Sakai, Masahiko Abe, Colloids and Surfaces B: Biointerfaces, 2001, 20, 95–103.
16. Sarathi Kundu, H Matsuoka, and H. Seto, Colloids Surf B Biointerfaces, 2012, 93, 215-218.
17. David M. Charbonneau and Heidar-Ali Tajmir-Riahi, J Phys. Chem B, 2010, 114, 1148-1155.
18. Anna Salvati, Andrzej S. Pitek, Marco P. Monopoli, Kanlaya Prapainop, Francesca Baldelli Bombelli, Delyan R. Hristov, Philip M. Kelly, Christoffer Åberg, Eugene Mahon and Kenneth A. Dawson, Nature Nanotechnology, 2013, 8, 137–143.
19. Monopoli M.P., Åberg Christoffe, Salvati Anna & Dawson Kenneth A. , Nature Nanotechnology, 2012, 7, 12, 779-786.
20. Anna Lesniak, Ferderico Fenaroli, Marco P. Monopoli , Christoffer Åberg Christoffer, Kenneth A. Dawson, Anna Salvati , ACS Nano. 2012, 6, 5845-5857.
21. Eudald Casals, Tobias Pfaller, Albert Duschl, Gertie Janneke Oostingh and Victor Puntes, ACS Nano, 2010, 4, 3623–3632.
22. Surajit Chatterjee. and Tushar Kanti Mukherjee, Phys Chem Chem Phys, 2014, 16, 8400-8408.
23. Nishima Wangoo, C.Raman Suri, and G. Shekhawat, Applied Physics Letters, 2008, 92, 133104.
24. Daniel Harries, Sylvio May, William M.Gelbart, AvinoamBen-Shaul, Biophysical Journal, 1998, 75, 159 –173.
25. Artzner F. , Zantl R. , Rapp G. , and Rädler J. O. , Physical Review Letters, 1998, 81, 5015-5018.
26. Jennifer J. McManus, Joachim O. Ra¨ dler, and Kenneth A. Dawson, J Am Chem Soc, 2004, 126, 15966-15967.
27. Tae-Hwan Kim, Changwoo Do, Shin-Hyun Kang, Min-Jae Lee, Sung-Hwan Lima and Sung-Min Choi, Soft Matter, 2012, 8, 9073-9078.
28. https://avantilipids.com.
29. Uttam Anand, Saptarshi Mukherjee, Biochim Biophys Acta, 2013, 98, 1830, 5394-5404.
30. Leandro R.S.Barbosa, Maria Grazia Ortore,Francesco Spinozzi, Paolo Mariani,Sigrid Bernstorff, Rosangela Itri, Biophys J, 2010, 98, 147-157.
31. Karina Kubiak-Ossowska, Monika Cwieka, Agnieska Kaczynska, Barbara Jachimska and Paul A. Mulheran. Phys.Chem.Chem.Phys, 2015, 17, 24070
32. http://www.nsrrc.org.tw/www/eng/endstation/BL23A/saxs.
33. http://nscric.web.nthu.edu.tw/files/15-1006-122296.
34. Dmitry Molodenskiy, Evgeny Shirshin, Tatiana Tikhonova, Andrey Gruzinov, Georgy Petersa and Francesco Spinozzid, Phys. Chem. Chem. Phys., 2017,19 17143-17155.