研究生: |
陳韋中 Chen, Wei-Jhong |
---|---|
論文名稱: |
外爾半金屬的能帶結構計算與預測 The band structure calculations and the predictions of the Weyl semimetal |
指導教授: |
鄭弘泰
Jeng, Horng-Tay |
口試委員: |
徐斌睿
Hsu, Pin-Jui 鄭澄懋 Cheng, Cheng-Maw |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 第一原理 、密度泛函理論 、格林函數 、拓樸材料 、外爾半金屬 、狄拉克方程 、外爾方程 、表面態 、費米弧 、外爾點 、自旋軌域耦合 |
外文關鍵詞: | first principle, density functional theory, Green’s function, topological material, Weyl semimetal, Dirac equation, Weyl equation, surface state, fermi arc, Weyl point, spin orbital coupling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用密度泛函理論(density functional theory,DFT)和格林函數方法(Green’s function method)做外爾半金屬(Weyl semimetal)的能帶結構(energy band structure)的模擬與預測。DFT適合模擬塊材(bulk)和板材(slab),格林函數適合模擬板材。然而用DFT方法模擬板材所需要的計算量很大,用格林函數方法模擬板材時所需的計算量較用DFT方法模擬板材時所需的計算量少很多,因此我們會需要格林函數方法。我們用這兩種方法模擬TaAs、TaP、NbAs和NbP等材料的表面態(surface state),並將調整能量去觀察能帶結構,然而我們發現這兩種方法的模擬結果似乎會有差別。我們發現DFT的結果通常與實驗結果較相近,但格林函數方法有時會跟DFT方法有差異。而可能導致格林函數的計算跟DFT結果不同的可能原因為軌域選擇的方式、解格林函數的演算法…等。此外我們也發現了每一篇參考文獻對費米弧的判別結果有時有不一致的問題。儘管如此,外爾點(Weyl point)的拓樸電荷(topological charge)數對應費米弧(Fermi arc)的連結數這件事是正確的。
此外我們將TaAs的Ta替換為V、Nb,As替換為N、P、Sb、Bi時發現除了As被替換為N時不會是外爾半金屬,其餘的組合都有機會成為外爾半金屬。我們推測這可能與原子電負度(electronegativity)、電子游離能(Ionization energy)或其它原因有關,而我們也進一步驗證了原子量(atomic mass)影響外爾點的間距,其原因是自旋軌域耦合(spin orbital coupling,SOC)的強度導致。事實上SOC是外爾半金屬的形成因素之一。我們也發現除了As被替換為N的情形之外都有部分的點保有TaAs的外爾點分布,這代表晶格的結構主導了外爾點的分布。這些系統遵守時間反演對稱(time reversal symmetry),但不遵守空間反向對稱(inversion symmetry)。
In this thesis, we mainly use the density functional theory(DFT) and the Green’s function method to do the simulations and the predictions of the energy band structures. DFT is suitable to simulate bulk and slab, and Green’s function method is suitable to simulate slab. However, Using DFT to simulate slab needs very large calculation, and Using Green’s function to simulate slab needs much less calculation than using DFT, so we need Green’s function method. We use these two methods to simulate the surface states of TaAs, TaP, NbAs, and NbP lattices and adjust the energy to observe their energy band structures. However, we find that the results of the two methods seem different. We also find that the results of DFT are usually similar to the ones of the experiments, but the results of the Green’s function are sometimes different from the ones of DFT. The reasons which cause the difference between the calculation results of the Green’s function and DFT probably are the way of choosing orbitals, the algorithm of solving Green’s function, …etc. Besides, the recognition results of the Fermi arcs sometimes may not be the same in each reference. Despite the fact, it is correct that the number of the topological charges of the Weyl points corresponds to the connection number of the Fermi arcs.
In addition, we replace Ta of TaAs with V and Nb and replace As with N, P, Sb, and Bi, and we find that all of the combinations have probability to cause Weyl semimetal except for the cases of replacing As with N. We infer that it may be related to the electronegativity of the atoms, the ionization energy of the electrons or the other reasons. We also verify the atomic mass can affect the distance between the Weyl points, and it is caused by the strength of the spin orbital coupling(SOC). In fact, SOC is one of the reasons which causes the Weyl semimetal. We also find that there are some Weyl points have the distribution behavior of the TaAs for each combination except for the cases of replacing As with N. It means that the lattice structure dominates the distribution of the Weyl points. These systems have time reversal symmetry but have no inversion symmetry.
[1] Shun-Qing Shen, Topological Insulators, Dirac Equation in Condensed Matter, Second Edition (2017)
[2] Liang Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007)
[3] Binghai Yan and Claudia Felser, Annu. Rev. Condens. Matter Phys. vol. 8:337–54 (2017)
[4] Yan Sun, Shu-Chun Wu, Binghai Yan, Phys. Rev. B 92, 115428 (2015)
[5] C. David Sherrill, An Introduction to Hartree-Fock Molecular Orbital Theory (2000)
[6] Neil W. Ashcroft, N. David Mermin, Solid State Physics (1976)
[7] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
[8] N D Woods, M C Payne and P J Hasnip, J. Phys.: Condens. Matter 31 453001 (2019)
[9] Hohenberg and Kohn Phys. Rev. B 136, 864 (1964)
[10] Paul Ziesche, Stefan Kurth, John P. Perdew, Computational Materials Science 11 122–127 (1998)
[11] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)
[12] Alexander Altland and Ben Simons, Condensed Matter Field Theory, second edition (2010)
[13] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt, Nicola Marzari, wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions (2008)
[14] Nicola Marzari and David Vanderbilt, Phys. Rev. B 56, 12847 (1997)
[15] Ivo Souza, Nicola Marzari, and David Vanderbilt, Phys. Rev. B 65, 035109 (2001)
[16] Gerald D.Mahan, Many Particle Physics, third edition (2000)
[17] M P Lopez Sancho, J M Lopez Sancho and J Rubio, J. Phys. F: Met. Phys. 15 851-858. (1985)
[18] M P Lopez Sancho, J M Lopez Sancho and J Rubio, J. Phys. F: Met. Phys. 14 1205-1215. (1984)
[19] QuanSheng Wua, ShengNan Zhang, Hai-Feng Song, Matthias Troyer, Alexey A. Soluyanov, WannierTools: An open-source software package for novel topological materials (2017)
[20] A. Zee, Quantum Field Theory in a Nutshell, second edition(2010)
[21] Micheal E.Peskin, Daniel V.Schroeder, an introduction to quantum field theory (1995)
[22] B. Q. Lv, T. Qian and H. Ding, Rev. Mod. Phys. 93, 025002 (2021)
[23] B. Q. Lv, Z.-L. Feng, J.-Z. Zhao Noah F. Q. Yuan, A. Zong, K. F. Luo, R. Yu, Y.-B. Huang, V. N. Strocov, A. Chikina, A. A. Soluyanov, N. Gedik, Y.-G. Shi, T. Qian, and H. Ding, Phys. Rev. B 99, 241104(R) (2019)
[24] Mehdi Kargarian, Mohit Randeria, and Yuan-Ming Lu, arXiv:1509.02180v5 (2016)
[25] Huaqing Huang, Kyung-Hwan Jin, and Feng Liu, Phys. Rev. B 98,121110(R) (2018)
[26] Timothy M. McCormick, Itamar Kimchi, and Nandini Trivedi, Phys. Rev. B 95, 075133 (2017)
[27] David Vanderbilt, Phys. Rev. B 41, 7892(R) (1990)
[28] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994)
[29] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)
[30] Wahyu Setyawan and Stefano Curtarolo, Computational Materials Science 49 299-312 (2010)
[31] Hongming Weng, Chen Fang, Zhong Fang, B. Andrei Bernevig, and Xi Dai, Phys. Rev. X 5, 011029 (2015)
[32] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015)
[33] Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, Nature Materials 15, 27–31 (2016)
[34] Shin-Ming Huang, Su-Yang Xu, Ilya Belopolski, Chi-Cheng Lee, Guoqing Chang, BaoKaiWang, Nasser Alidoust, Guang Bian, Madhab Neupane, Chenglong Zhang, Shuang Jia, Arun Bansil, Hsin Lin & M. Zahid Hasan, ncomms8373 (2015)
[35] Daniel Bulmash and Xiao-Liang Qi, Phys. Rev. B 93, 081103(R) (2016)
[36] Su-Yang Xu, Ilya Belopolski, Daniel S. Sanchez, Chenglong Zhang, Guoqing Chang, Cheng Guo, Guang Bian, Zhujun Yuan, Hong Lu, Tay-Rong Chang, Pavel P. Shibayev, Mykhailo L. Prokopovych, Nasser Alidoust, Hao Zheng, Chi-Cheng Lee, Shin-Ming Huang, Raman Sankar, Fangcheng Chou, Chuang-Han Hsu, Horng-Tay Jeng, Arun Bansil, Titus Neupert, Vladimir N. Strocov, Hsin Lin, Shuang Jia, M. Zahid Hasan, Sci. Adv. 2015; 1:e1501092 (2015)
[37] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)
[38] Guoqing Chang, Su-Yang Xu, Daniel S. Sanchez, Shin-Ming Huang, Chi-Cheng Lee, Tay-Rong Chang, Guang Bian, Hao Zheng, Ilya Belopolski, Nasser Alidoust, Horng-Tay Jeng, Arun Bansil, Hsin Lin, M. Zahid Hasan, Sci. Adv. 2016; 2:e1600295 (2016)
[39] David R. Lide, CRC Handbook of Chemistry and Physics, 84th edition (2003-2004)
[40] STEVEN G. BRATSCH and J. J. LAGOWSIU, Polyhedron Vol. 5, No. 11, pp. 1763-1770 (1986)