研究生: |
郭觀華 Kuok, Kun-Wa |
---|---|
論文名稱: |
利用掃描電容顯微鏡研究Si1-xGex (x<0.1)薄膜中對硼原子活化之因素及影響 Factors and Influence of Boron Atoms Activation in Si1-xGex (x<0.1) Thin Film Using Scanning Capacitance Microscopy |
指導教授: |
梁正宏
Liang, Jenq-Horng 張茂男 Chang, Mao-Nan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 超淺接面 、矽鍺 、掃描電容顯微鏡 、活化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
隨著金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)尺寸的一直微縮,淺接面的製作已經步入了奈米尺寸。除此之外,為了防止漏電流和擁有良好的載子遷移速率(carrier mobility),MOSFET在材料上的選擇也很重要。矽鍺材料擁有異質接面結構,故可降低能帶間隙(energy bandgap)並提高載子在基材中的遷移速率,且與矽基材在製程上有良好的相容性,因此矽鍺材料成為未來製作MOSFET的首要考量,故此我們必須更瞭解硼原子佈植於矽鍺材料內的特性。本論文的研究係利用B+低能量離子佈植於Si1-xGex基材(x<0.1)上製作P-N淺接面,再經不同的熱退火處理來活化硼原子,從中分別探討佈植區域尺寸以及鍺原子對硼原子活化的影響。另外再於矽基材中製作一組佈植與退火條件相同的超淺接面為對照組,以及製作一組以BF2+分子式低能量離子佈植於Si0.97Ge0.03和相同的退火條件的超淺接面為對照組,以探討不同離子佈植源對Si0.97Ge0.03基材中硼原子活化的差異。配合SRIM電腦程式的計算模擬、掃描電容顯微鏡、二次離子質譜儀、穿透式電子顯微鏡等分析工具,藉以瞭解佈植區域尺寸不同和基材內鍺含量增加時,硼原子的活化特性與載子縱深分布的變化情形。
本論文研究係利用Si1-xGex(x=0、0.01、0.03和0.05)基材,在離子佈植方面則使用4.5 keV、5×1014 cm-2的B+離子佈植以及一組20 keV、5×1014 cm-2的BF2+分子離子佈植於Si0.97Ge0.03,退火方式採取兩階段方式退火處理,第一階段為900℃急遽熱退火(spike annealing, SA)和第二階段為500℃爐管退火(furnace annealing, FA)六小時。發現佈植離子源為B+時,加入SA熱退火處理後,硼原子的活化會隨著佈植區域尺寸的減少而增加,另外,硼原子在鍺含量較高的基材內其活化程度會較高,顯示鍺原子確實有助於硼原子的活化。再經過第二階段FA熱退火處理後,缺陷數量大幅下降且晶格修復更為完全,同時仍然有進一步的活化現象。當佈植離子源為BF2+時,在相同的佈植能量、劑量、基材和退火條件下,發現與B+的結果完全相反,隨著佈植尺寸越大,其活化現象越好,這意味著氟原子的存在確實會對硼原子有影響。綜合以上結果,活化現象產生的基本原因都是來自於為了讓材料自由能下降致使晶格更加穩定所導致的。
[1] A.N. Donald, “Semiconductor Physics and Devices” Third Edition, McGraw-Hill (2003).
[2] Robert R. Schaller, “Technological Innovation in the Semiconductor Industry: A Case Study of the International Technologu Roadmap for Semiconductors(ITRS)”, 1985.
[3] The International Technology Roadmap for Semiconductors, Semiconductor Industry Association, Alan Allan, Don Edenfeld, William H. Joyner Jr., Andrew B. Kahng, Mike Rodgers, Yervant Zorian, (2001).
[4] M. Sze, “Semiconductor devices physics and technology”, John Wiley & Sons, (1997).
[5] K.C. Walter, M. Nastasi, C. Munson, Surface and Coating Technology, 93, 287 (1997).
[6] B. Colombeau, F. Cristiano, F. Olivie, C. Amand, G. Ben Assayag, A. Claverie, NIM B, 186, 276(2002)
[7] G. Impellizzeri, J.H.R. dos Santos, S. Mirabella ,E. Napolitani, A. Carnera, F. Priolo, NIM B, 230, 220(2005).
[8] S. Ruffell, I.V. Mitchell, and P.J. Simpson, Appl. Phys. Lett., 97, 123518(2005).
[9] D. Cammilleri, F. Fossard, D. D□barre, C. TranManh, C. Dubois, E. Bustarret, C. Marcenat, P. Achatz, D. Bouchier, J. Boulmer, Thin Solid Films, 517, 75 (2008).
[10] Y. Civale, L.K. Nanver, P. Hadley, E.J.G. Goudena, H. Schellevis, IEEE Electron Device Lett., 27, 341 (2006).
[11] Bi-Monthly Newsletter, 工研院 電子所 奈米電子元件技術組, (2004).
[12] Yasuhiro Shiraki, Akira Sakai, Surface Science Reports, 59, 153 (2005).
[13] L. Goldtesin, F. Glas, J.Y. Marzin, M.N. Charasse, and G. Le Roux, Appl. Phys. Lett., 47, 1099 (1985).
[14] H.C. Lin, T.G. Jung, H.Y. Lin, C.Y. Chang, T.F. Lei, P.J. Wang, R.C. Deng, J.Lin, and C.Y. Chao, J. Appl. Phys., 74, 5395 (1993).
[15] L. Goldtesin, F. Glas, J.Y. Marzin, M.N. Charasse, and G.Le Roux, Appl. Phys. Lett., 47, 1099 (1985).
[16] P.G. Pai, S.S. Chao, and Y. Takagi, J.V.S.T., 4, 689 (1986).
[17] J. Holleman, A.E.T. Kuiper, and J.V. Verweij, J. Electrochem. Soc., 140, 1717 (1993).
[18] E.G. Seebauer, R. Ditchfield, Solid State Technology, vol.40, 111, Oct (1997).
[19] M.D. Giles, J. Electrochem. Soc. 138, 1160 (1991).
[20] K.S. Jones and J. Gyulaia, Ion Implantation Science and Technology, Edited by J. F. Ziegler (1996).
[21] 張文亮,「奈米通訊」,第八卷第二期,9 (2001).
[22] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, 46 (2000).
[23] D.R. Mayer, J. Comas, R.G. Wilson, Furukawa, and H. Matsumura, J.Appl. Phys.52, 3357 (1981).
[24] D.F. Downey, C.M. Osburn, S.D. Marcus, Solid State Technology, 40, 71, Dec (1997).
[25] 石東益,「矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討」 ,中央大學化學工程研究所碩士論文,2000。
[26] T.-J. King, and K.C. Saraswat, IEDM Tech. Digest, 567 (1991).
[27] 李建平,“科學月刊”,第242期,(1990).
[28] K. Rajendrank, W. Schoenmaker, S. Decouter, R. Loo, M. Caymax,W. vandervorst, IEEE Electron Device Lett., vol. 48, pp. 2022-2031(2001).
[29] J. Bang, H. Kimb, J. Kang, W.J. Lee and K.J. Chang, Sci. Phys. B 401-402, 196-199 (2007).
[30] S. Chopra, M. C. Ozturk, V. Misra, K. McGuire and L.E. McNeil, Appl. Phys. Lett., 88, 202114 (2006).
[31] E. Bruno, S. Mirabella, G. Impellizzeri, F. Priolo, F. Giannazzo, V. Raineri, and E. Napolitani, Appl. Phys. Lett., 87, 133110 (2005).
[32] S. C. Jain, W. Schoenmaker, R. Lindsay, P. A. Stolk, S. Decoutere, M. Willander, and H. E. Maes, J. Appl. Phys., 91, 8919 (2002).
[33] P. A. Stolk, J. H. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jara□z, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys., 81, 6031 (1997).
[34] A. Agarwal, AT Inc, M. A. Beverly, Ion Implantion Technology, Session 9, Sept (2000).
[35] P.M. Fahey, P.B. Grffin, and J.D. Plummer, Rev Mod. Phys., 61, 1291 (1989).
[36] A. Agarwal, H.J. Gossmann, D.J. Eaglesham, S.B. Herner, A.T. Fiory, and T.E. Haynes, Appl. Phys. Lett., 74, 2435 (1999).
[37] S.T. Nakagawa, Y. Hada, and L. Thome, Rad. Eff. And Defects in Solids, 153, 1 (2000).
[38] J.F. Ziegler, J.P. Biersack, U. Littmask, Stopping and Range of ions in Solids vol. 1, Pergamon Press, New York, (1985).
[39] J.F. Ziegler, J.P. Biersack, SRIM : the Stopping and Range of ions in Matter Version 96.07. IBM-Research, Yorktown, (1996).
[40] M. Natarajan, T.T. Sheng, K.l. Pey, Y.P. Lee, and M.k. Radhakrishnan, Proceedings of 6th IPFA ’1997’, Singapore, 86 (1997).
[41] J. Smoliner, B. basnar, S. Golka, E. Gornik, B. Loffler, M. Schatzmayr, H. Enichlmair, Appl. Phys. Lett., 79, pp3182-3184 (2001).
[42] SCM Support Note No.224, Rev. C, Digital Instruments, Santa Barbara CA, 224-225 (1996).
[43] M. Leicht, G. Fritzer, B. Basnar, S. Golka, and J. Smoliner, Microelectronics Reliability, 41, 1535 (2001).
[44] P. Malberti, L. Ciampolini, M. Ciappa, and W. Fichtner, Microelectronics Reliability, 40, 1395 (2000).
[45] C.D. Bugg, and P.J. King, J. Phys. E:Sci. Instrum.21, 147 (1988).
[46] J. P. Long, H. R. Sadeghi, J. C. Rife, and M. N. Kabler, Phys. Rev. Lett., 64, 1158 (1990).
[47] M.N. Chang, C.Y. Chen, F.M. Pan, J.H. Lai, W.W. Wan, and J.H. Liang, Appl. Phys. Lett., 82, 3955 (2003).
[48] H.W. Werner and H.A.M. de Grefte, Vacuum-Technik, 37, 17 (1969).
[49] M.V. Cread, P.V. Espen, and F. Adams, Rev. Sci. Instrum, 53, 1007 (1982).
[50] 汪建民主編,「材料分析」,中國材料學會,383 (1998).
[51] K. Rajendrank, W. Schoenmaker, S. Decouter, R. Loo, M. Caymax, W. vandervorst, IEEE Electron Device Lett., vol. 48, pp. 2022-2031 (2001).
[52] S. Solmi, L. Mancini, S. Milita, M. Servidori, G. Mannino, and M. Bersani, Appl. Phys. Lett., 79, 1103 (2001).
[53] S. Libertino, J.L. Benton, D.C. Jacobson, D.J. Eaglesham, J.M. Poate, S. Coffa, P. Kringhoj, P.G. Fuochi, and M. Lavalle, Appl. Phys. Lett.71, 389 (1997).
[54] L.S. Robertson, K.S. Jones, L.M. Rubin, and J. Jackson, Appl. Phys Lett., 87, 2910 (2000).
[55] D.P. James, D.D. Michael, B.G. Peter, “Silicon VLSI Technology:Fundamentals, Practice and Modeling” Third Edittion, Prentice Hall, 393(2005).
[56] A.N. Donald, “Semiconductor Physics & Devices”Second Edition, Irwin, Chicago, 94 (1997).
[57] J. Marcon, A. Merabet, Materials Science and Engineering: B, 154 , 216 (2008).
[58] F. Giannazzo, F. Priolo, V. Raineri, and V. Privitera, Appl. Phys. Lett., 78, 598 (2001).
[59] F. Giannazzo, S. Mirabella, V. Raineri, D. De Salvador, E. Napolitani, A. Terrasi, A. Carnera, A. V. Drigo, and F. Priolo, Phys. Rev. B, 66, 161310 (2002).
[60] T.H. Huang, H. Kinoshita, and D.L. Kwong, Appl. Phys. Lett., 65, 1829 (1994).