研究生: |
謝秉烜 Hsieh, Ping Hsuan |
---|---|
論文名稱: |
利用濺鍍法沉積奈米金顆粒於三維發泡石墨烯表面並探討其在室溫下氨氣濃度感測之應用 Deposit gold nanoparticles on three-dimensional graphene foam via the sputter technique and analyze its application on ammonia gas sensing at room temperature |
指導教授: |
戴念華
Tai, Nyan Hwa |
口試委員: |
李紫原
Lee, Chi Young 林建宏 Lin, Jarrn Horng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 石墨烯 、奈米金 、氣體感測 |
外文關鍵詞: | graphene, gold nanoparticles, gas sensor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備一種奈米金顆粒/發泡石墨烯的結構並用於氨氣感測器的應用。以發泡鎳作為基板,用化學氣相沉積法成長石墨烯於其上,石墨烯的層數為5-10層,利用鹽酸蝕刻將鎳完全去除,即可得到一個三維網狀結構的發泡石墨烯。將其貼附於PET之上以穩固其結構作為基材,並利用濺鍍法將奈米金顆粒沉積於石墨烯表面以進行改質,在本實驗中,亦利用不同的濺鍍參數控制奈米金顆粒的大小。
結果顯示,藉由將奈米金沉積於發泡石墨烯上可明顯增加其在氨氣感測方面的敏感度、響應時間、回復時間等性質。而其感測表現亦隨著沉積奈米金顆粒的大小不同而改變,由於小顆粒之奈米金可以使發泡石墨烯之比表面積大幅度增加,因此其感測表現較大顆粒之奈米金更佳,此外此元件製備簡單可於室溫下對ppm等級濃度氨氣具有高敏感度並具有可逆性。
本研究亦探討不同溫度下此元件對氨氣感測的能力,於高溫環境下元件對氨氣的吸附及脫附能力有明顯的提升,可利用升溫的方式使氣體完全的脫附。
This study used a gold-nanoparticle-decorated graphene foam composite as a sensor for detecting low concentration ammonia gas. Few-layer graphene was grown on the nickel foam by CVD. Then the nickel foam was removed by a etching process to fabricate a three-dimensional graphene foam structure. Graphene foam was then adhered to a PET film to prevent the graphene foam structure from collapse during handling. Gold nanoparticles with different sizes were deposited on the surface of the graphene foam by sputtering. The results showed that the sensitivity, recovery time, and response time of the sensor were enhanced attributing to the deposition of gold nanoparticles on the surface of graphene foam. Size effects of gold nanoparticles on the performance of the sensor were studied and it was found that smaller gold nanoparticles enhance the sensitivity of the device significantly due to the increase of the specific surface area. In addition, the sensor possessing high sensitivity in the range of 50 to 1000 ppm for NH3 and having reversible behavior were detected. The dependence of the sensing ability in the operating temperature was also investigated. In high operating temperature, the ability of adsorption and desorption of the ammonia molecules was remarkable enhanced owing to the fully desorption of the NH3 at elevated temperature.
參考文獻
[1] 王世敏,“奈米材料的原理及製備”, 五南出版社,緒論, (2004).
[2] C. Suryanarayana, “Nanocrystalline materials”, International Materials Reviews, Vol.40, pp.41-62, (1995).
[3] C. Suryanarayana and C. C. Koch, “Nanocrystalline materials-Current research and future directions”, Hyper fine Interactions, Vol.130, pp.5-44, (2000). [4] 賴炤銘, 李錫隆, “奈米材料的特殊效應與應用”, The Chinese Chemical Society in Taipei, Vol.61, pp.585-597, (2003).
[5] S. Peng, Y. M. Lee, C. Wang, H. F. Yin and S. Daiand, S. H. Sun, “A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation”, Nano Res., Vol.1, pp.229-234, (2008).
[6] B. Harris, “Composite materials”, The Institute of Materials, Britain London, Chapter I, (1999).
[7] Z. P. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition”, Nature materials, Vol.10, pp.424-428, (2011).
[8] D. D. L. Chung, “Composite material science and applications functional materials for modern technologies”, Springer-Verlag, Germany Berlin, Chapter I, (2003).
[9] M. Scarselli, P. Castrucci and M. D. Crescenzi, “Electronic and optoelectronic nano-devices based on carbon nanotubes”, Journal of Physics: Condensed Matter, Vol.24, pp.313202-313227, (2012).
[10] E. W. Hill, A. Vijayaragahvan and K. Novoselov, ”Graphene Sensors”, IEEE Sensors Journal, Vol.11, pp.3161-3170, (2011).
[11] H. W. Kro, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “C60:buckminsterfullerence”, Nature, Vol.318, pp. 162-163, (1985).
[12] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol.354, pp.56-58, (1991).
[13] S. Iijima, “Single-shell carbon nanotube of 1 nm diameter”, Nature, Vol.363, pp.603-605, (1993).
[14] D. S. Bethune, C. H. Kiang and M. S. Devries, “Cobalt catalyzed growth of carbon nanotubes with single atomic layer walls”, Nature, Vol.363 , pp.605–607, (1993).
[15] P. J. F. Harries, ”Carbon nanotubes and related structures :new materials for twenty first century”, Cambridge University Press, Britain Cambridge, (1995).
[16] B. Q. Wei, R. Vajtai and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Applied Physics Letters, Vol.79, pp.1172-1174, (2001).
[17] Z. Yao, C. L. Kane and C. Dekker, “High field electrical transport in single wall carbon nanotubes”, Physical Review Letters, Vol.84, pp.2941-2944, (1999).
[18]D. R. Kauffman and A. Star, “Carbon nanotube gas and vapor sensors”, Angew. Chem. Int. Ed., Vol.47, pp.6550–6570, (2008).
[19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and et al., “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp.666-669, (2004).
[20] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, Vol.321, pp.385-388, (2008).
[21] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structure, Vol.25, pp. 2558-2561, (2007).
[22] R. R. Nair, “Fine structure constant defines visual transparency of graphene”, Science, Vol.320, p.1308, (2008).
[23] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and et al., “Superior thermal conductivity of single layer graphene”, Nano Letters, Vol.8, pp.902-907, (2008).
[24] F. Yavari, Z. P. Chen, A. V. Thomas, W. Ren, H. M. Cheng and N. Koratkar, “High sensitivity gas detection using macroscopic three–dimensional graphene foam network”, Scientific Reports, Vol.1, pp.166-200, (2011).
[25] M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb carbon: a review of graphene”, Chemical Reviews, Vol.110, p.132-145, (2010).
[26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos and et al., “Electric field effect in atomically thin carbon films”, Science, Vol.306, pp.666-669, (2004).
[27] J. Wintterlina and M. L. Bocquet, “Graphene on metal surfaces”, Surface Science, Vol.603, pp.1841-1852, (2009).
[28] X. Li, W. Cai, L. Colomboand and R. S. Ruoff, “Evolution of graphene growth on Ni and Cu by carbon isotope labeling”, Nano Letter, Vol.9, pp.4268-4272, (2009).
[29] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chenand and S. S. Pei, “Graphene segregated on Ni surface and transferred to insulators”, Applied Physics Letters, Vol.93, pp.1-3, (2008).
[30] A. Reina, S. Thiele, X. Jia and S. Bhaviripudi, “Growth of large area single and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces”, Nano Research, Vol.2, pp.509-516, (2009).
[31] X. Li, C. W. Magnuson and A. Venugopal, “Graphene films with large domain size by a two-step chemical vapor deposition process”, Nano Letter, Vol.10, pp.4328-4334, (2010).
[32] W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol.80, p.1339, (1958).
[33] P. Zhu, M. Shen, S. Xiao and D. Zhang, “Experimental study on there ducibility of graphene oxide by hydrazine hydrate”, Journal of Physics: Condensed Matter, Vol.406, pp.498-502, (2011).
[34] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and et al., “Highly conducting graphene sheet and Langmuir-Blodgett films”, Nature Nanotechnology, Vol.3, pp.538-542, (2008).
[35] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang and H. Ning, “A survey on gas sensing technology”, Sensors, Vol.12, pp.9635-9665, (2012).
[36] S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef and M. C. Kanan, ”Semiconducting Metal oxide based sensors for selective gas pollutant detection”, Sensors, Vol.9, pp.8158-8196, (2009).
[37] M. Batzill and U. Diebold, “The surface and materials science of tin oxide”, Progress in Surface Science, Vol.79, pp.47-154, (2005).
[38] T. Zhang, S. Mubeen, N. V. Myung and M. A. Deshusses, “Recent progress in carbon nanotube based gas sensors”, Nanotechnology, Vol.19, pp.332001-332014, (2008).
[39] R. Leghrib, E. Llobet, A. Felten, J. J. Pireaux, Z. Zanolli, J. C. Charlier and et al.,“NO2 and CO interaction with plasma treated Au-decorated MWCNTs: Detection pathways”, Procedia Chemistry, Vol.1, pp.931-934, (2009).
[40] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and et al., “Detection of individual gas molecules adsorbed on graphene”, Nature materials, Vol.6, pp.652-655, (2007).
[41] W. Yuan and G. Shi, ”Graphene-based gas sensors”, Journal of Materials Chemistry A, Vol.1, pp.10078-10091, (2013).
[42] M. Gautam and A. H. Jayatissa, “Gas sensing properties of graphene synthesized by chemical vapor deposition”, Materials Science and Engineering C, Vol.31, pp.1405-1411, (2011).
[43] G. Lu, L. E. Ocola and J. Chen, “Reduced graphene oxide for room temperature gas sensors”, Nanotechnology, Vol.20, pp. 445502-445511, (2009).
[44] R. K. Joshi, H. Gomez, F. Alvi and A. Kumar, “Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in Practical Conditions”, Journal of Physical Chemistry C, Vol.114, pp.6610-6613, (2010).
[45] W. Wu, Z. Liu, L. A. Jauregui, Q. Yua, R. Pillai, H. Caoc and et al., “Wafer scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing”, Sensors and Actuators B, Vol.150, pp.296-300, (2010).
[46] Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang and et al., “Improving gas sensing properties of graphene by introducing dopants and defects: a first principles study”, Nanotechnology, Vol.20, pp.1885504-1885511, (2009).
[47] A. S. Khojin, D. Estrada, K. Y. Lin, M. H. Bae, F. Xiong, E. Pop and et al., “Polycrystalline graphene ribbons as chemiresistors”, Advanced Materials, Vol.24, pp.53-57, (2012).
[48] J. Yi, J. M. Lee and W. I. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high sensitive flexible gas sensors”, Sensors and Actuators B, Vol.155, pp.264-269, (2011).
[49] Z. M. Ao, J. Yang, S. Li and Q. Jiang, “Enhancement of CO detection in Al doped graphene”, Chemical Physics Letters, Vol.461, pp.276-279, (2008).
[50] M. Gautam and A. H. Jayatissa, “Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles”, Solid-State Electronics, Vol.78, pp.159-165, (2012).
[51] S. Kumara, N. McEvoya, T. Lutza, G. P. Keeleya, N. Whitesidea, W. Blaua and et al., “Low temperature graphene growth”, ECS Transactions, Vol.5, pp.175-181, (2009).
[52] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Brink and P. J. Kelly, “Doping graphene with metal contacts”, Physical Review Letters, Vol.101, pp.026803-026806, (2008).
[53] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Lu, P. Kim, G. W. Flynn and L. E. Brus, “Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate”, Nano Letters, Vol.10, pp.4944-4951, (2010).